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Preface

Bioinformatics is a new and interdisciplinary field which is concerned with the development of
methods for recording, organising, and analysing biological data. With the advent of human
genome-sequencing, microarrays and high-performance computing, developing software tools
to generate useful biological knowledge has been a major activity.
Clustering techniques have been increasingly used in the analysis of high-throughput

biological datasets. Although many generic clustering methods have been used successfully
to analyse biological datasets, many specific properties of those datasets require customised
methods which are specifically designed to meet such properties. Therefore, both aspects –
the design and the application of clustering methods in this field – have been under active
investigations and considerations by many research groups around the world. Indeed, there
have been many activities in assimilating the work in this field, especially by designing
state-of-the-art methods which uniquely address various issues that are particularly relevant
in biological data.
This book attempts to outline the complete pathway from the basics of molecular biology to

the generation of biological knowledge. It is supplied with an introductory part to molecular
biology at a level which can be understood by researchers coming from a numeric background,
such as computer scientists and information engineers. The introductory part helps those read-
ers to get introduced to the basic biological knowledge needed to appreciate the specific appli-
cations of the methods in this book. The book also explains the structure and properties of many
types of high-throughput datasets commonly found in biological studies, including public repo-
sitories/databases, pre-processing like normalisation and the identification of differentially
expressed genes. A major part of the book will cover various clustering methods and cluster-
ing-validation techniques as well as their applications to biological datasets, representing an
integrative analysis. It should be remarked that not all clustering methods have been utilised
in bioinformatics yet. Some of the most recent state-of-the-art clustering methods, which
can deal with specific problems that appear in biological datasets, are paid much attention,
especially in how they, and their possible successors, could be used to enhance the pace of
biological discoveries in the future. Although proposed in the context of bioinformatics, some



specialised sophisticated methods can also be used by other researchers to apply them to other
analogous problems. Therefore, the general community of researchers in the field of machine
learning are also targeted by most of the contents of this book.
There are books mainly focusing on various aspects related to microarrays, such as

biological experimental design, image processing, identification of differentially expressed
genes, supervised classification, etc., while covering clustering analysis at a less thorough level.
In any case, these tend to focus on clustering of microarray datasets rather than considering a
wider range of biological datasets. Yet, other books provide more thorough coverage of
clustering than the aforementioned books, but they do not provide sufficient background in
the field of molecular biology for researchers coming from numeric backgrounds to appreciate
and understand the origins of the available datasets. These kinds of book tend to be mainly
data-clustering books and naturally belong to the computational side of bioinformatics rather
than to the interface between the computational and the biological sides. This book does sit at
this interface and goes far beyond those currently available, in that it presents some biological
preliminaries as well as some state-of-the-art clustering methods that are specifically designed
to suit specific issues which appear in biological datasets.
As the field is still developing, such a book cannot be definitive or complete. This book is

designed to target researchers in bioinformatics ranging from entry level researchers (e.g. senior
bachelor students and master students) to the most senior researchers (e.g. heads of research
groups). It is hoped that graduate students should be able to learn enough basics before studying
journal papers; researchers in related fields should be able to get a broad perspective on what
has been achieved; and current researchers in this field should be able to use it as a reference.
Further to the material provided in the book, a companion website hosting a selected

collection of software and links to publicly available datasets can be accessed by using the
following URL: https://code.google.com/p/integrative-cluster-bioinformatics/.
A work of this magnitude will unfortunately contain errors and omissions. We would like to

take this opportunity to apologise unreservedly for all such indiscretions in advance. We would
welcome comments and corrections; please send them by email to a.k.nandi@ieee.org or by
any other means.

BASEL ABU-JAMOUS, RUI FA AND ASOKE K. NANDI

London, UK
Feb 2015
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Part One
Introduction





1
Introduction to Bioinformatics

1.1 Introduction

Interesting research fields emerge through the collaboration of researchers from different,
sometimes distant, disciplines. Examples include biochemistry, biophysics, quantum informa-
tion science, systems engineering, mechatronics, business information systems, management
information systems, geophysics, biomedical engineering, cybernetics, art history, media tech-
nology and others. This marriage between disciplines yields findings which blend the views of
different areas over the same subject or set of data.
The stimuli leading to such collaborations are numerous. For example, one discipline may

develop tools that generate types of data that require another discipline to analyse. In other
cases, one field scratches a layer of unknowns to discover that significant parts of its scope
are actually based on the principles of another field, such as the low-level biological studies
of the chemical interactions in the cells, which delivered biochemistry as an interdisciplinary
field. Other interdisciplinary fields emerged because of their complementary involvement in
building different parts of the same target system or in understanding different sides of the same
research question; for example, mechatronics engineering aims at building systems which have
both mechanical and electronic parts, such as all modern automobiles. Interdisciplinary areas
like business information systems and management information systems have emerged due to
the high demand for information systems which target business and management aspects;
although generic information systems would meet many of those requirements, a customised
field focusing on such applications is indeed more efficient given such high demand.
The interdisciplinary field of this book’s focus is bioinformatics. The motive behind this

field’s emergence is the increasingly expanding generation of massive raw biological data fol-
lowing the developments in high-throughput techniques in the last couple of decades. The scale
of this high-throughput data is orders of magnitude higher than what can be efficiently analysed

Integrative Cluster Analysis in Bioinformatics, First Edition. Basel Abu-Jamous, Rui Fa and Asoke K. Nandi.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



in a manual fashion. Consequently, information engineers were recruited in order to contribute
to data analysis by employing their computational methods. Cycles of computational analysis,
sharing of results, interdisciplinary discussions and abstractions have led, and are still leading,
to many key discoveries in biology and medicine. This success has attracted many information
engineers towards biology and many biologists towards information engineering to meet in
a potentially rich intersection area, which itself has grown in size to establish the field of
bioinformatics.

1.2 The “Omics” Era

A new suffix has been introduced to the English language in this era of high-throughput data
expansion; that is “-omics”, and its relatives “-ome” and “-omic”. This started in the 1930s
when the entire set of genes carried by a chromosome was called the genome, blending the
words “gene” and “chromosome” (OED, 2014). Consequently, the analysis of the entire
genome was called genomics, and many known research journals carried the term “genome”
or “genomics” in their titles such as Genomics, Genome Research, Genome Biology, BMC
Genomics, Genome Medicine, the Journal of Genetics and Genomics (JGG), and others.
The -ome suffix was not kept exclusive for the genome; it has been rather generalised to

indicate the complete set of some type of molecule or object. The proteome is the complete
set of proteins in a cell, tissue or organism. Similarly are the transcriptome, metabolome, gly-
come and lipidome for the complete sets of transcripts, metabolites, glycans (carbohydrates)
and lipids. In a respective order, large-scale studies of those complete sets are known as
proteomics, transcriptomics, metabolomics, glycomics and lipidomics. The -ome suffix was
further generalised to include the complete sets of objects other than basic molecules. For
example, the microbiome is the complete set of microorganisms (e.g. bacteria, microscopic
fungi, etc.) in a given environment such as a building, a sample of soil or the human gut
(Kembel et al., 2014). More omic fields have also emerged such as agrigenomics (the appli-
cation of genomics in agriculture), pharmacogenomics and pharmacoproteomics (the applica-
tion of genomics and proteomics to pharmacology), and others.
All of those biological fields of omics involve high-throughput datasets which are subject to

information engineering involvements, and therefore reside at the core focus of bioinformatic
research. An even higher level of omics analysis involves integrative analysis of many types of
omic datasets. OMICS: a Journal of Integrative Biology is a journal which targets research
studies that consider such collective analysis at different levels from single cells to societies.
More types of high-throughput omic datasets are expected to emerge. The role of bioinfor-

matics as an interdisciplinary field will be more important. This is not only because each of
those omic datasets is massive in size when considered individually; it is also because of
the size of information hidden in the relations between those generally heterogeneous datasets,
which requires more sophisticated computational methods to analyse.

1.3 The Scope of Bioinformatics

The scope of bioinformatics includes the development of methods, techniques and tools
which target storage, retrieval, organisation, analysis and presentation of high-throughput
biological data.
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1.3.1 Areas of Molecular Biology Subject to Bioinformatics Analysis

In a very general statement, each part of molecular biology which produces high-throughput
data is subject to bioinformatics analysis. On the other hand, low-throughput data which can be
manually analysed do not represent subjects for bioinformatics. The omics fields described in
the previous section are indeed included in bioinformatics analysis. This includes aspects of
DNA, RNA and protein sequence analysis, gene and protein expression, genetics of diseases
including cancers and special phenotypes, analysis of gene regulation, chemical interaction
regulation, enzymatic regulation, other types of regulation, analysis of flowing signals in cells,
networks of genetic, protein and other molecular interactions, comparable analysis of the
diversity of genomes between individuals or organisms in an environment or across different
environments, and others.

1.3.2 Data Storage, Retrieval and Organisation

The human genome is a linear thread of more than three billion base-pairs (letters). In 2012, and
after more than 4 years after its starting point, the 1000 Genomes Project Consortium
announced the completion of sequencing of the complete genomes of 1092 individuals from
fourteen different populations (The 1000 Genomes Project Consortium, 2014). Moreover, the
genomes of thousands of organisms, other than humans, have been sequenced and stored dur-
ing the last two to three decades. As for gene expression data, tens of thousands of massive
microarray datasets have been generated in the last two decades. Add to that the increasing
amounts of data generated for protein expression, DNA binding and other types of high-
throughput data. Data generation has not stopped and is expected to increase rapidly due to
the massive advances in technologies and cost reduction. Therefore, it is crucial to store such
amounts of datasets in an efficient manner which allows for quick and efficient access by large
numbers of researchers from different parts of the world simultaneously.
Given the current trend, which is to offer most of the generated high-throughput datasets for

public use in centralised databases, it becomes essential to standardise the way in which data are
organised, annotated and labelled. This enhances information exchange and mutual under-
standing between different research groups in the world.
Taken together, the scope of bioinformatics indeed includes designing and implementing

appropriate databases for high-throughput biological data storage, building means of data
access to those databases such as web services and network applications, organising different
levels of data pieces by standard formats and annotations, and, undoubtedly, maintaining and
enhancing the availability and the scalability of these data repositories.

1.3.3 Data Analysis

ElaineMardis, the Professor of Genetics in the Genome Institute atWashington University, and
a collaborator in the 1000 Genomes Project, titled her “musing” published inGenomeMedicine
in 2010 as “the $1,000 genome, the $100,000 analysis?” (Mardis, 2010). Mardis discussed the
tremendous drop in the cost of sequencing the complete genome of an individual human from
hundreds of millions of dollars to a few thousands, and that it is expected to reach the line of
$1,000. She mused, based on many facts and observations, that the cost of data analysis, which
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does not seem to be dropping, will constitute the major part of the total cost, rather than the cost
of data generation.
A small proportion of human genes, out of 20 000–25 000, has been well described and

understood, while many gaps in our understanding of the vast majority of them do still exist.
Identifying the sequence of a gene from a thousand individuals and measuring its expression
profile under many conditions are not sufficient to understand its function. What increases the
level of complexity is the fact that genes are highly interrelated in terms of their functions and
regulation. Many genes’ products work in concert to achieve a common objective; many others
perform different related or unrelated tasks in different parts of the cell; many genes’ products,
if met within the same location, would have conflicts resulting in them negatively affecting
each other’s function; moreover, many genes’ products control, directly or indirectly, the
expression of other genes. These are examples of complexities that are not directly seen in
raw sequence or expression datasets.
The quest to answer such questions and to unveil more regarding the unknowns is being

carried out by large interdisciplinary collaborations, which when blended belong to the field
of bioinformatics. Computational methods already existing in the field of machine learning
were borrowed to be employed in biological data analysis. However, owing to the high
demand, enormous size and various special characteristics, various computational methods
have been designed specifically within the area of bioinformatics. Recruiting appropriate exist-
ing computational methods and/or designing customised methods for more efficient analysis of
the biological data represents a large aspect of bioinformatics.
Furthermore, the gap between the existing methods in bioinformatics and the amount of

information hidden in the existing data is large. This calls for more innovative out-of-the-
box methods which have the ability to capture the diverse types of hidden information.
A key feature of the desired methods is the ability to analyse multiple heterogeneous datasets,
which can be of one or multiple types, in order to fetch high-level and low-level comprehensive
and collective conclusions (Abu-Jamous et al., 2013). It is expected that such methods would
have a level of complexity and sophistication which enables them to delve into the inherently
embodied complexities of the biological systems.

1.3.4 Statistical Analysis

In order to rely on the measurements offered by a high-throughput dataset or the results pro-
vided by a computational method, quantitative quality measures are required. Owing to the
large-scale nature of analysis in bioinformatics, which typically involves large numbers of
objects or samples with many stochastic variables, tests and techniques based on statistics rep-
resent the most intuitive choice for quality assessment and significance identification.

1.3.5 Presentation

A table with tens of thousands of numbers, a list of thousands of gene names, a network of tens
of thousands of gene relations, a string of billions of characters representing the genome of an
individual, a list of scores assigned to thousands of genes based on some computational
method, a table of gene clusters produced by a partitioning algorithm, and others are examples
of ways of data presentation that are not normally comprehensible by human researchers. Thus,
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effective techniques for comprehensible data and results presentations are required; designing
such techniques is certainly part of the roles of researchers in bioinformatics.
Presentation takes the forms of figures, tables, and text passages. Successful choice of the

type of figure or table to be used depends on the ability of that figure to highlight the aspects of
interest in a large amount of data in a comprehensible and conclusive way. Colour-coding,
symbol-coding, lines, arrows, labels, shapes and others are examples of pieces that need to
be brought together cleverly to produce a powerful figure. If such figures can be produced
to visualise data or results, they are more desirable than tables, which are in their turn more
desirable than text passages. Indeed, supporting text is usually required to describe the figure
and explain how it should be read.
Bioinformaticians, as part of their scope of research, have been designing different types of

figures and tables that suite the nature of biological high-throughput data.Many of those figures
belong to conventional families of figures that are used in various areas of research, and many
others are novel or customised versions of the conventional ones.

1.4 What Do Information Engineers and Biologists Need to Know?

Most fruitful bioinformatic studies usually involve collaborations between both biologists and
information engineers rather than being carried out solely by one of the two parties. Though, for
a successful collaboration, researchers from both sides need to take steps towards each other to
reside at the interface between the two fields.
Information engineers are experts in machine learning and related areas, and in many cases,

in parts of statistics. They have the ability to design, implement and apply computational meth-
ods. An information engineer who works in bioinformatics needs to learn the principles of
molecular biology such as the main components and processes of the living cell at its molecular
level, and what is known as the central dogma of molecular biology. By learning such intro-
ductory amounts of molecular biology, the information engineer will be able to comprehend
terms like gene, protein, DNA, RNA, messenger RNA, non-coding RNA, chromatin, transcrip-
tion, translation, gene regulation, gene expression, ribosome, genetic interaction, protein
physical interaction, pathway, transport, cellular signalling and others. The information engi-
neer will also be able to understand the structure of the commonly used high-throughput bio-
logical datasets such as nucleic acid sequences, microarrays and genetic interaction networks.
Moreover, it is important, at least within the specific targeted application, to be aware of the
major biological processes taking place and the main questions of research requiring answers.
Additionally, familiarity with the statistical properties lying beneath the rawmeasurements pro-
vided by the high-throughput datasets, such as the levels and types of noise, is indeed crucial for
reliable analysis. We provide most of what an information engineer needs to know in molecular
biology in Parts Two and Three of this book.
In contrast, molecular biologists are familiar with the living cell and its processes. They may

be familiar with the structure of high-throughput datasets, but this becomes essential for the
type of dataset considered if they are involved in a bioinformatic collaboration. As for the com-
putational methods, they usually need to know them at the black-box level of abstraction, that is
they need to understand the structure of the raw data provided to the method as an input, the
structure of the result generated by the method as an output, and the semantic relation between
the input and the output. In most of the cases, they do not need to delve into the mathematical
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and logical details that are carried out within the course of the method’s application. However,
sometimes a more detailed understanding of the method, deeper than the black-box level of
abstraction, is very useful for better comprehension of its results.
It can be seen in the preceding paragraphs that both parties need to understand to a good level

of detail in the structures of the datasets and the results. This is because the datasets and the
results respectively represent the cargoes transferred from biologists to information engineers
and from information engineers to biologists across the interface between the two fields.
Accompanied with the results, and sometimes with the datasets, statistical measures are
provided. Good understanding of the proper interpretation and indications of such measures
is certainly required from both parties.

1.5 Discussion and Summary

The massive amounts of high-throughput biological datasets generated in the last two to three
decades have motivated biologists to collaborate with information engineers in order to be able
to analyse such manually-incomprehensible data. The collaborations have grown considerably,
leading to the identification of the interface between biology and informatics as a standalone
interdisciplinary field named as bioinformatics.
The scope of bioinformatics includes designing, implementing and applying methods for

storing, retrieving, organising, analysing and presenting biological high-throughput data. Many
of these methods were borrowed from other applications of information engineering, while
many others were specially designed for bioinformatics applications. Omics datasets, which
measure certain types of biological molecules or objects at a large scale, reside at the core focus
of bioinformatics. Examples of omics include genomics, proteomics and glycomics, which are
large-scale analyses of genes, proteins and glycans (carbohydrates), respectively.
In a successful collaboration, both information engineers and biologists need to have certain

levels of knowledge and understanding of each other’s fields. Information engineers need to
understand the principles of molecular biology and the main biological questions in the context
under consideration, while biologists need to learn abstract levels of description of the compu-
tational methods involved in the analysis. Both parties need to be familiar with the structure
of the raw datasets and the results, as well as the correct indications and consequences of
the adopted statistical measures.
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2
Computational Methods in
Bioinformatics

2.1 Introduction

Owing to the diversity in the types of high-throughput biological data as well as the diversity in
the objectives of bioinformatic research studies, various classes of computational methods have
been utilised in bioinformatics. Algorithms belonging to the fields of machine learning, data
mining, optimisation, template matching, image processing, soft computing, modelling, sim-
ulation and string manipulation have been employed in bioinformatics. Moreover, many bio-
logical datasets have beenmodelled and analysed in the light of principles from network theory,
control theory, information theory and statistics. Additionally, the implementation of such
methods has been carried out by using different tools and technologies such as Structured
Query Language (SQL) databases, web protocols and services, high-level programming lan-
guages, mark-up languages, statistical and modelling software applications, and sophisticated
toolboxes, packages, and tools customised for bioinformatics.
This book focuses on clustering algorithms, which represent one of the most widespread

classes of methods recruited in bioinformatics. For integrative cluster analysis, other classes
of methods need to be adopted in a cascade of steps starting from raw datasets and ending
at final mature sets of results; we have focused on such classes of methods, such as normal-
isation and visualisation, in this book as well.
For a more complete view of the field, we devote this chapter as a brief introduction to com-

putational methods used in bioinformatics in general. This will position cluster analysis in its
place within the wider context of bioinformatics, and shall establish a base on which the reader
can build by referring to the relevant resources in the literature.
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2.2 Machine Learning and Data Mining

Machine learning is an area in artificial intelligence which is concerned about building algorithms
and methods that can learn from empirical data. Machine learning is divided into two main
branches, supervised learning and unsupervised learning. In supervised learning, a representative
set of known, labelled, data is learned in order to be able to predict unknown data by general-
isation. In contrast, unsupervised learning aims at learning hidden structures in a given set
of unlabelled data. Other branches in machine learning, including semi-supervised learning,
also exist.
Data mining aims at discovering patterns and useful pieces of information in a large set of

data. The focus in data mining is the final objective and not the method. Therefore, methods
from machine learning are commonly utilised by data mining in addition to other methods and
techniques from statistics, database systems, discrete mathematics and optimisation. The key
aspect which allows data mining analysis to employ machine learning methods is the ability
to format and represent the mined data in a structure that is accessible by machine learning
methods. Such data is generally organised as a set of objects with quantitative features.

2.2.1 Supervised Learning

The given set of known and labelled data that is subjected to supervised learning is known as
learning data. Learning data generally includes a set of observed examples whose targets are
known. The target of an example object represents the “correct answer” to the question under
investigation given that particular object. An illustrative example is a set of known personal
photographs which are used to train a supervised learning method to answer the question
“is the given photograph of a male or a female?” The training set is labelled, that is the correct
gender of the person in each of the given photographs is known and is fed to the method to be
trained on. If training was successful, the supervised method will be able to identify, with high
accuracy, the gender of a previously unseen personal photograph other than the ones provided
in the training set. The problem targeted by this illustrative example, known as supervised
classification, constitutes a major part of the area of supervised learning. Classification meth-
ods learn how to classify sets of objects into two or more classes after being trained on a set of
objects whose correct classes are known.
Numerous methods for linear and non-linear classification exist. Examples include k-nearest

neighbour (KNN) (Altman, 1992), artificial neural networks (ANN) (Haykin, 1999), support
vector machines (SVM) (Cortes and Vapnik, 1995), Fisher’s linear discriminant (Duda, Hart
and Stork, 2000), Bayes classifier (Devroye, Györfi and Lugosi, 1997), decision trees (Quinlan,
1986), regression-based classifiers (Naseem, Togneri and Bennamoun, 2010), and genetic pro-
gramming (GP) (Liu and Xu, 2009). Many linear methods, like the SVM, can be made non-
linear by applying what is known as the kernel trick, which non-linearly transforms the data into
another space, in which the originally linear method is applied (Shawe-Taylor and Cristianini,
2004). Moreover, and owing to the differences between those methods in their points of
strength and weakness, ensembles of classifiers are used in which many methods vote for
the answer, and the answer which obtains the majority of votes is considered to be the final
consensus answer (Breiman, 1996).
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Supervised classification methods are commonly used in bioinformatics. For example, a
given set of gene expression samples taken from patients and healthy individuals can be pro-
vided to a classifier to learn the gene expression patterns that distinguish between the two
classes. Two main consequences follow from successful training of such classifier – first, it
can assist the diagnosis of a gene expression sample taken from a new individual whose med-
ical condition is unknown; secondly, the learnt pattern of gene expression which distinguishes
between the two medical conditions can be used to advance our understanding of the genetic
causes and relations to the disease under consideration. Cancers, owing to their largely genetic
dependency and our incomplete knowledge about them, are widely investigated through super-
vised classification analysis.

2.2.2 Unsupervised Learning

In contrast to supervised learning, the data investigated by unsupervised learning methods are
unlabelled. A dominating class of unsupervised learning methods is unsupervised clustering,
which, when applied in bioinformatics, represents the focus of this book. In clustering, a set
of observed objects with measured features is partitioned into a number of clusters of objects
such that those objects which are included in the same cluster are similar to each other while
being dissimilar to the objects included in the other clusters based on a predefined similarity/
dissimilarity criterion (Abu-Jamous et al., 2013). One of the challenges that appear in unsuper-
vised learning but not in supervised learning is the identification of the correct number of
classes/clusters. This might be estimated based on a priori field-specific knowledge, or might
need to be learnt as part of the learning process. Owing to the massive amounts of unknowns in
molecular biology, the unsupervised nature of clustering, that is its lack of requirements of a
priori known labels, makes it widely applied in bioinformatics, especially in gene clustering
(Eisen, 1999; Salem, Jack and Nandi, 2008; Abu-Jamous et al., 2013; Fa et al., 2014).
Numerous families of clustering methods exist in the literature, and they are thoroughly

explained in Part Four of this book. These families of methods include partitional clustering
(e.g. k-means (Pena, Lozano and Larranaga, 1999)), neural network-based clustering (e.g.
self-organising maps (SOMs) (Xiao et al., 2003) and self-organising oscillator networks
(SOON) (Salem, Jack and Nandi, 2008)), mixture model clustering (e.g. finite mixture model
(Bailey and Elkan, 1994)), hierarchical clustering (divisive and agglomerative) (Eisen, 1999),
fuzzy clustering (e.g. fuzzy c-means) (Dimitriadou, Weingessel and Hornik, 2002), consensus
clustering (Avogadri and Valentini, 2008; Vega-Pons and Ruiz-Shulcloper, 2011; Abu-Jamous
et al., 2013), graph clustering (e.g. spectral clustering algorithm (Ng et al., 2001)), biclustering
(Cheng and Church, 2000), and others.

2.3 Optimisation

Optimisation is the process of finding the best object or solution in a given set of objects or
possible solutions based on a predefined criterion (Nemhauser, 1989). The criterion is normally
formulated as a fitness function of the numerically represented features of the objects. A fitness
function must be strictly monotonically increasing or decreasing with the quality of the objects
as serves the problem under investigation. Therefore, the problem of optimisation can be
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formulated as the problem of finding the object at which the fitness function has its absolute
maximum or absolute minimum value as it strictly monotonically increases or decreases with
the quality, respectively. Such a point is known as the global optimum or the absolute optimum.
A major problem of optimisation is the problem of being stuck in local optima (plural of

optimum). A local optimum is a point in the fitness function at which the function’s value
is better than its value at all of the surrounding points in the feature space.
Hill climbing is an intuitive and fast algorithm for optimisation, but is well known for having

the problem of convergence to local optima. Figure 2.1 illustrates the process of minimisation
by hill climbing while considering four different starting points. The starting point is an initial
solution that is picked randomly or based on a priori knowledge. Then, the points locally sur-
rounding that point are examined by the fitness function. The neighbouring point which has the
minimum value is chosen as the next point. Similar tests are performed over the neighbours of
that point, and this step is repeated iteratively. When the current point has the minimum fitness
compared with all of its direct neighbours, the algorithm terminates and this final point is con-
sidered the final solution. The path of the points selected by the algorithm is shown in the four
examples in Figure 2.1, and the final solution at which it converges is shown as a solid circle.
It can be clearly seen in the figure that the starting point greatly influences the path of optimisa-
tion by hill climbing as well as the point of convergence.
Brute force optimisation, also known as exhaustive search, is theoretically guaranteed to

arrive at the global (absolute) optimum solution, but it is completely infeasible in most real
problems. In brute force, the fitness values of absolutely all of the possible points in the search
space are calculated, and then the best of them is simply selected. The common infeasibility of
this method is due to the size of the search space in most real problems. For example, the prob-
lem of identifying the best permutation of N objects has a search space of (N!), that is the num-
ber of possible permutations of those N objects is the factorial of N. If there is a very simple
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Figure 2.1 Hill climbing optimisation is highly dependent on the starting position. Absolute (global)
optimum was found in (b) and (d) while the algorithm converged to local optima in (a) and (c)
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fitness function which can be evaluated in 1 ns (10−9 s) by a modern processor, the amount of
time needed to evaluate the fitness function for all of the possible solutions is (10−9 ×N!)
seconds. Therefore, CPU time will be 0.12 μs (10−6) for five objects (N =5), 3.6 ms (10−3)
for ten objects (N =10), 22 min for fifteen objects (N =15), 77 years for twenty objects
(N =20), and 500 million years for twenty-five objects (N =25). Practical problems would
include tens to tens of thousands of objects, and it is very clear that brute force solutions
are infeasible in such cases.
More sophisticated optimisation methods exist such as Newton’s method (Nocedal and

Wright, 2006), quadratic programming (Nocedal and Wright, 2006), numerical analysis, gra-
dient descent (Snyman, 2005), and heuristic methods such as simulated annealing (Kirkpatrick,
Gelatt and Vecchi, 1983), tabu search (Glover, 1989; Glover, 1990), particle swarm optimisa-
tion (Xiao et al., 2003), and genetic algorithm (GA) (Mitchell, 1998). Furthermore, many of
these methods have many variants and hybrid approaches.
Optimisation techniques are widely adopted in machine learning methods applied in bioin-

formatics and in other fields. This is by structuring the machine learning problem or part of it in
the form of an optimisation problem. Additionally, optimisation is recruited to solve many
other problems in bioinformatics such as determining proteins’ three-dimensional secondary
and ternary structures, template matching in DNA and RNA sequences, regression-based tech-
niques such as the locally weighted scatter-plot smoothing (lowess) normalisation technique
and others.

2.4 Image Processing: Bioimage Informatics

Various types of biological high-throughput data involve images at one point or another within
their pipelines of steps. Examples include microarrays, next generation sequencing (NGS) and
fluorescence microscopy. In fluorescence microscopy, the molecules of interest in cells (e.g.
specific protein(s)) are tagged with fluorescent labels, which can be detected relatively easily
when images for those cells are captured. Image pre-processing and processing techniques are
involved to quantify and qualify the pieces of information embedded in those biological images
such as the level of abundance of that molecule and its localisation within the cell.
Owing to recent advancements in microscopic optics, fluorescent tagging and robotics, auto-

mation of microscopic imaging has become feasible. Consequently, fluorescent microscopy
has started to be used to produce tens of thousands to millions of images in an automated fash-
ion at large scales (e.g. genome wide) over many time points, that is high-throughput filming of
large-scale biological parameters. Key parameters that can be measured in this high-throughput
manner include macromolecule (e.g. protein) diffusion, protein–protein interactions and sub-
cellular localisation and concentration. The analysis of such types of high-throughput biolog-
ical data is an emerging branch of bioinformatics known as bioimage informatics (Pepperkok
and Ellenberg, 2006; Peng, 2008; Li et al., 2013).
There are many challenges in bioimage informatics. Storing and organising the many tera-

bytes of data produced by a single high-throughput microscopy experiment is one. Another
major challenge is pre-processing the produced images as they are produced in an efficient
way. Pre-processing normally includes segmentation and filtering of non-interesting areas.
Also, classification of the types of images and sub-image components would be necessary;
for example, the types of cells or sub-cellular components within an image can greatly influence
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downstream analysis. Then, features, preferably quantitative, are extracted from the images to
produce numeric matrices that can be exposed to machine learning, data mining and statistical
analysis. Pre-processing, classification and quantification are most preferably carried out online
while image acquisition and storing are in progress. This is intensively demanding and would
most likely require access to advanced computing infrastructures such as computing clusters
and massive storage disks. Indeed, developments in image-processing algorithms that can
handle such a vast scale of data efficiently are required to progress in this area.

2.5 Network Analysis

Modelling the massive amounts of biological data that are and will be available has taken many
forms, which have consequently led to many approaches of analysis. The network form is an
increasingly considered form of representing relations between biological objects (e.g. pro-
teins, genes, etc.). As known in network theory, a network consists of nodes (vertices) and
edges (links). Therefore, the provided biological objects can be represented as nodes, while
the relations that link between those objects can be represented as edges (Képès, 2007).
Many properties characterise different types of networks. For example, the edges may be

undirected or directed (e.g. arrows), networks may allow or not allow cycles, that is cyclic
or acyclic (sequences of edges which terminate at the same node from which they originate),
and networks may allow or not allow self-connected nodes, where a node is connected to itself.
Different existing network analysis methods are only applicable to networks with specific types
of edges and nodes; thus, bioinformatic network analysis requires proper network modelling
and sufficient understanding of its properties.
Examples of biological networks include protein–protein interaction networks, genetic inter-

action networks and gene regulatory networks. Protein–protein interactions are physical inter-
actions between protein molecules; consequently, protein–protein interaction networks model
proteins as nodes, and physical interactions as undirected edges (Chen et al., 2014). Genetic
interaction networks represent genes as nodes and interactions as edges; a genetic interaction
is considered to exist between two genes if the effect of perturbing both genes together is not
equivalent to the added effects of perturbing each gene individually, and therefore there are no
self-connected nodes in genetic interaction networks (Tong et al., 2004; Costanzo et al., 2010).
Gene regulatory networks model the regulatory roles of the products of some genes over other
genes; a gene is said to regulate another gene if its product activates or represses the expression
of that target gene; therefore, the network edges which represent such regulatory roles are not
only directed, but also of one of two different types, activation or repression (Maetschke et al.,
2014). Moreover, a gene may regulate its own expression by positive or negative feedback
loops, which allows for self-connected nodes to be formed in such networks. Other types of
biological networks which are also commonly considered include signalling networks, meta-
bolic networks, hybrid networks with more than one type of nodes and/or edges, and others.

Biological network analysis can enhance our understanding of the interactive roles of genes,
proteins, metabolites and others. For that to happen, more advancements in the computational
methods that are capable of analysing biological networks are required (Horton, 2014). Indeed,
such methods need to suit the different sets of properties that characterise their target networks
of investigation.
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2.6 Statistical Analysis

Principles and techniques from statistics have been heavily used in bioinformatics either
directly or by constituting influential parts of other classes of methods such as machine learning
and optimisation. Moreover, statistical measures, like p-values, E-values, radii of confidence,
false-discovery rates (FDR) and others have been used to quantify the significance and the reli-
ability of the results produced by various bioinformatic analysis experiments.
At the high-throughput data generation step, it is common to produce many replicates for

the same condition in order to increase the statistical reliability of the measurements. The
arithmetic mean, the geometric mean or the median can be taken for those measurements as
a representative value (Churchill, 2002; Quackenbush, 2002; Wu and Irizarry, 2007; Wu,
2009). After data generation, data correction and normalisation techniques consider statistical
techniques to format the data in a way which is suitable for downstream analysis. For example,
quantile normalisation of microarray datasets is based on the assumption that all microarray
samples produced in a single experiment at a genome-wide scale should have the same statis-
tical distribution, and consequently they are all statistically manipulated to meet this pre-
justified assumption before downstream comparisons and investigations take place (Bolstad
et al., 2003).
As datasets are normalised, they undergo thorough analysis, which is usually carried out by

employing machine learning, data mining, optimisation and other classes of sophisticated meth-
ods. Although mere statistical analysis is not common at this step, it is most likely that statistical
techniques are involved in critical parts of such sophisticated methods. Supervised classification
methods like Fisher’s discriminant and Bayes’ classifier, expectation-maximisation, unsuper-
vised clustering methods, many image processing filters such as the Gaussian filter, and many
others are examples of methods that are mainly based on statistical principles.
Most of the numerical, in contrast to biological, techniques that are recruited to validate and

evaluate the generated datasets as well as the results of bioinformatic analysis by supervised
classification, unsupervised clustering, optimisation or other methods, are mainly statistical.
This includes analysis of variance (ANOVA), analysis of covariance (ANCOVA), classifica-
tion cross-validation accuracy rates, clustering validation indices, mean-square error (MSE) for
optimisation, p-values for non-randomness-significance of observations and results, FDR
for the level of positive reliability on the findings, and many others. Therefore, it is important
for bioinformatricians to have sufficient understanding of statistics in order to enhance the
capabilities of computational methods in high-throughput biological data analysis.

2.7 Software Tools and Technologies

Algorithms, of any class, are complete descriptions of the steps that lead to their desired targets.
Though, such descriptions need to be implemented and then executed in order to actualise the
algorithms. Implementation is generally carried out by coding the described steps using one of
the existing programming languages. Commonly used programming languages and program-
ming environments include MATLAB, R, C, C++, Python, Java, C# and Perl. MATLAB and
R languages are fourth-generation programming languages which represent sophisticated
platforms for data analysis, especially when matrices, data visualisation and statistical analysis
are heavily involved. C, C++, Python, Java, C# and Perl are all high-level general-purpose
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third-generation programming languages. Although they are not specialised in data analysis
like MATLAB and R, they have been widely used in bioinformatics and various bioinformatic
packages, and libraries have been produced for them (e.g. the Bioinformatics toolbox in
MATLAB and the Bioconductor packages in R).
In addition to coding the steps of algorithms, other IT technologies have been used in

bioinformatics. For example, database technologies (e.g. SQL, Oracle, MySQL, etc.), spread-
sheet applications (e.g. Microsoft Excel and Open Office Calc), MATLAB “MAT” files, mark-
up languages (e.g. XML and HTML), and text files, are amongst the technologies used for data
storage, structuring and organisation.
Although different bioinformaticians tend to have different preferences in terms of the

technologies they rely upon for different tasks, sufficient familiarity with more technologies
facilitates a wider range of tools, and consequently a wider range of possible applications.
Moreover, structure standardisation of data and results and the employment of software pat-
terns with loosely-coupled modules ease communication between tools and software packages
implemented using different languages. One way for designing loosely-coupled software mod-
ules is by allowing them to read their input data and parameters from well-defined and struc-
tured text or XML files, and to write their output results to similarly well-defined and structured
files. In this case, a module from one language or tool may produce results’ files that can be read
and analysed by a module from another language or tool. This is important for the reusability of
the various efficiently implemented methods and algorithms that have been publically provided
for the research community.

2.8 Discussion and Summary

The diversity in the types of high-throughput biological datasets and the diversity in the
research questions tackled by bioinformatics have led to corresponding diversity in the classes
of computational methods that have been recruited in this growing field of research. For
instance, supervised machine learning methods learn the patterns governing a representative
set of labelled data objects and generalise that to new unseen data objects. In contrast, unsu-
pervised machine learning methods learn the patterns that are hidden in a set of unlabelled data
objects. Data mining, which may recruit machine learning methods, aims at extracting findings
and discoveries from large sets of data. Optimisation methods search a massive space of pos-
sible solutions to a research question regarding some high-throughput biological data in order
to identify the globally optimum solution; in most of the cases, brute force search, that is
evaluating all solutions in the space, is infeasible, which necessitates smart heuristic search
techniques instead.
Many types of biological high-throughput datasets are generated in the form of massive

amounts of images or can be structured in the form of networks. Consequently, methods for
image processing and network analysis have been employed in bioinformatics, with the former
rising into an emerging sub-area in bioinformatics known as bioimage informatics.
Another class of techniques which is involved in almost all of the aforementioned classes of

methods is statistics. Statistical analysis is used in order to quantify the significance, the reliability
and the validity of the generated raw datasets as well as the results produced throughout data
analysis. A good understanding of the principles of statistics is key for the bioinformaticians
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who design computational methods as well as for the computational biologists who apply those
methods, reason their results and infer new findings from them.
The diversity is not only in the classes of methods used in bioinformatics; it is also in soft-

ware technologies, that is, tools and programming languages that are used in order to implement
those methods. Althoughmost of the methods can be implemented by using any of the available
methods, efficient implementations of some of those methods have already been publically
provided to the research community. Therefore, the flexibility of the researcher in utilising
different technologies and the flexibility of the publically provided implementations in being
coupled with modules implemented using other tools and languages enhance the reusability of
the growing literature of implemented bioinformatic methods.
This chapter presents an in-breadth review of the computational methods used in bioinfor-

matics. This contextualises clustering analysis, which is the main focus of the rest of this book.
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3
The Living Cell

3.1 Introduction

The cell is the main building block of living creatures. It is a busy compartment of thousands of
different types of molecules which work cooperatively to meet certain goals such as cell
growth, maintenance and reproduction. Although various aspects of cells have been discovered
throughout the history of human research, numerous aspects are either vaguely known or com-
pletely unknown. Such poorly understood areas act as subjects for researchers to investigate,
while prioritising those aspects which, when understood, lead to more important consequences
such as better resistance to serious diseases. As understanding the basics of what is known
about cells is crucial for bioinformaticians to have fruitful and successful research, we provide
such a basic level of knowledge in this chapter, which might be of a greater use to those whose
background is in information engineering and computational sciences.

3.2 Prokaryotes and Eukaryotes

There are two main types of cells, prokaryotes and eukaryotes. In Greek, karyon means
“kernel”, or “nucleus”, promeans “before”, and eumeans “truly” (Alberts et al., 2008). There-
fore, and in simple terms, eukaryotic cells are those which are “truly nucleated”, or those cells
which have a nucleus, while prokaryotic cells are those that do not (Figure 3.1). The nucleus is
a relatively large compartment within the cell that has a nuclear membrane. The nuclear
membrane has large pores which allow small molecules to pass through. The nucleus in the
eukaryotes encapsulates the genetic material and decouples RNA synthesis (transcription)
from protein synthesis (translation); the genetic material, transcription and translation are
covered in more detail in the following chapter.
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Prokaryotes are simpler cells which are smaller in size, more basic in functionality and uni-
cellular. On the other hand, eukaryotes have larger cells, have more sophisticated functionality
and structure and range from unicellular to large multicellular organisms with specialised cells.
For example, the prokaryotic cells lack membrane-bound organelleswhich are usually found in
the eukaryotic cells such as mitochondria and chloroplasts. Species belonging to the domains
bacteria and archaea are prokaryotes, while protists, fungi, plants and animals are all eukaryotes.
The smallest known free-living eukaryote is the unicellular genus of green alga Ostreococ-

cus with an average size of about 0.8 μm3 (Courties et al., 1994; Leis et al., 2009). As for pro-
karyotes, a study by Lancaster and Adams concluded that a size of 172 nm is the smallest
hypothetical size for a prokaryote cell with biomedical requirements for growth, metabolism,
and reproduction (Lancaster and Adams, 2011). On the other hand, large sulphur bacteria are
the largest discovered bacteria with diameters reaching up to 750 μm, representing unicellular
prokaryotes that are visible by the naked eye (Salman, Bailey and Teske, 2013).

3.3 Multicellularity

3.3.1 Unicellular and Multicellular Organisms

Organisms can be classified into unicellular and multicellular. As inferred from the name, a
unicellular organism is that which consists of a single cell only, while a multicellular organism
consists of many cells, which are usually specialised. Although the majority of unicellular
organisms are microscopic, reaching volumes of less than 1 μm3 (e.g. cyanobacteria), a few
of them are macroscopic and can be seen by the naked eye, such as the xenophyophores which
are unusually huge unicellular protists that can reach 25 cm in diameter (Kamenskaya, Melnik
and Gooday, 2013).

Nucleus

Nucleolus

Chloroplasts

Nuclear membrane
(envelope)

Mitochondria

Cell membrane
(plasma membrane)

Cell wall
Flagellum

Genetic material

Cytoplasm

Ribosome
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Nucleoid

(genetic material not
membrane-bounded)

Endoplasmic reticulum

Nuclear pore

(a) (b)
Eukaryote Prokaryote

Figure 3.1 Demonstration of (a) the eukaryotic cell and (b) the prokaryotic cell
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3.3.2 Stem Cells and Cell Differentiation

Multicellular organisms usually have cells with different specialisations. In animals, skin cells,
bone cells, blood cells, neurons and retinal cells, are examples of specialised cells that form
tissues in a whole multicellular organism. A multicellular organism starts with a single cell
known as the zygote, which results from the fusion of the male sperm with the female ovum
(Figure 3.2a). This process is known as fertilisation. The zygote multiplies by cellular division
until an early mass of cells, known as the blastula, is formed, which has an outer layer of cells,
known as the blastoderm, and an inner fluid medium, known as the blastocoel.An inner mass of
cells is then formed within the blastocoel and is known as the inner cell mass (ICM) or the
embryoblast. Stem cells emerge from the ICM, and then enter a series of divisions to produce
thewhole organism.While dividing, different stem cells differentiate into different types of more
specialised cells, which maturate gradually to reach their final mature forms (Figure 3.2a and b).
In order to maintain the population of undifferentiated stem cells, they undergo mitosis,

which is cell division into two genetically identical daughter cells. This is known as self-
renewal, and is represented by the loop arrow in Figure 3.2b. They also involve asymmetric
division while differentiating such that one of the two daughter cells is identical to the mother
cell, that is an undifferentiated stem cell, while the other one is differentiated.
When a stem cell differentiates, it results in a progenitor cell, which although it is more spe-

cific than the stem cell, it is not a final mature cell and has the potency to differentiate into more
specific and mature cell types. Progenitor cells may undergo limited self-renewal divisions
before differentiation into mature cells (Figure 3.2b).
Stem cells are classified based on their potency,which is their ability to differentiate intomany

different cell types. A totipotent cell is a stem cell that can differentiate into all types of cells in
the organism, and the zygote is an example of that (Mitalipov and Wolf, 2009; Malaver-Ortega
et al., 2012). ICM cells are examples of pluripotent stem cells (Figure 3.2a), which are those
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Figure 3.2 (a) Early embryonic development, from fertilisation to differentiation. (b) Stem cell
differentiation
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cells that can differentiate into cells of any of the three germ layers, namely endoderm
(interior stomach lining, gastrointestinal tract and the lungs), mesoderm (muscles, bones, blood
and urogenital), and ectoderm (epidermal tissues and the nervous system) (Malaver-Ortega
et al., 2012).
After more differentiation, multipotent stem/progenitor cells are produced, which, although

are capable of differentiating into multiple types of cells, are limited to specific ones
(Seaberg and Kooy, 2003). For example, haematopoietic stem cells (HSCs), can differentiate
into any type of blood cells, such as red blood cells (RBCs), lymphocytes and platelets, but
cannot differentiate into nervous, bone, muscle or germ cells; see Figure 3.3. More differen-
tiated progenitor cells would have less potency as they are pushed to commit to a certain branch
of cells. If the progenitor cell can only differentiate into a single type of cells, it is known as a
unipotent cell. Examples of unipotent cells are the burst-forming unit-erythroids (BFU-E)
which are committed to the erythroid branch that results in producing erythrocytes (RBCs).
These committed unipotent cells which have not reached their final mature form yet are known
as precursor cells or blasts. Figure 3.3 shows the tree of progenitors (precursors) and mature
cells that can be derived from HSCs in mammals while providing more details in the erythroid
branch and fewer details in other branches.
There is large potential for stem cells in medical therapy as they can be used to produce

different types of healthy tissues in vitro, that is in the laboratory. The most developed use
of stem cells is in bone-marrow transplantation (Gahrton and Björkstrand, 2000; Yen and
Sharpe, 2008). They also have therapeutic potentials in many other applications (Singec
et al., 2007; Strauer, Schannwell and Brehm, 2009).

3.4 Cell Components

Figure 3.4 shows the main subcellular components of a typical eukaryotic cell from unicellular
and multicellular fungi to plants and animals. However, plants additionally have a tough exter-
nal cellular wall formed of cellulose and green components known as chloroplasts, which are
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Figure 3.3 Tree of haematopoietic stem, progenitor, precursor and mature cells in mammals
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only shown in Figure 3.1a. The subsequent subsections discuss those components in more
detail.

3.4.1 Plasma Membrane and Transport Proteins

The plasma membrane is a selective barrier that separates the internal contents of the cell from
the external media. Being selective means that it allows molecule exchange in both directions in
a controlled manner, which is a crucial property if the cell is to grow and reproduce as it needs to
import raw materials and export waste. This exchange is done by specialised membrane-
transport proteins which are embedded in the membrane itself. Different transport proteins
are specialised for different types of molecules such as sugars, amino acids, peptides, amines,
ions and others (Alberts et al., 2008).
The plasma membrane is formed of a phospholipid bilayer, which has the interesting prop-

erty of being amphiphilic. An amphiphilic molecule is that which has one hydrophilic side
(water-soluble) and one hydrophobic side (water-insoluble) (Figure 3.5a). When such mole-
cules are dropped in water, the hydrophobic side of each molecule tends to settle at a position
with the least possible level of contact with water. This happens by the spontaneous formation
of two layers of the molecules such that the hydrophobic sides of one layer face and contact
with the hydrophobic sides of the other layer, whereas the hydrophilic sides of both layers face
the water (Figure 3.5b). Under the correct conditions, dropping this material in water sponta-
neously forms vesicles of such a bilayer membrane which separate their content of water from
the surrounding medium (Figure 3.5c) (Alberts et al., 2008).

3.4.2 Cytoplasm

The cytoplasm is a dense gel-like fluid contained within the cell membrane and consists of
the cytosol and the cytoplasmic organelles (Alberts et al., 2008). Water comprises most of
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the cytoplasm’s material, while large amounts of soluble and insoluble macro- and micro-
molecules float within this fluid. Many studies have shown that the concentration of molecules
within the cytoplasm is high and therefore significantly affects molecular diffusion and the rate
of the cellular interactions (Goodsell, 1991; Luby-Phelps, 2000). The cytosol is the part of the
cytoplasm which is left after excluding the fraction contained within the cellular organelles
(Lodish and Matsudaira, 2000).

3.4.3 Extracellular Matrix

The extracellular matrix is the extracellular network of polysaccharides and proteins in a mul-
ticellular organism, which differs in nature for different types of species. The extracellular
matrix, of any nature, provides the platform on which cells adhere, and provides means for cell
communication. In animals, the matrix includes, amongst other things, the basement membrane
(aka basal lamina), which separates epithelial sheets and other types of tissues from connective
tissues (Alberts et al., 2008). Plants have cell walls of cellulose in their extracellular matrix. The
molecules forming the extracellular matrix of a tissue are synthesised and secreted by the cells
within that tissue itself.

3.4.4 Centrosome and Microtubules

The centrosome is a central organelle in the cells of animals, and includes a pair of centrioles.
Microtubules, which are long, hollow, and relatively thick filaments, are attached, from one
end, to the centrosomes. In mitosis, which represents the cell division into two genetically iden-
tical daughter cells, the centrosome acts as the spindle pole and the microtubules act as spindles.
This system represents the main regulator of cell division by increasing its efficiency and
fidelity.

(a) (b) (c)

Hydrophilic

Hydrophobic

Amphiphilic

Figure 3.5 Plasma membrane formation of amphiphilic phospholipid bilayers. (a) A single
phospholipid molecule with a hydrophilic side and a hydrophobic side. (b) A phospholipid bilayer
with the hydrophobic sides facing each other between the two layers of hydrophilic sides; the
hydrophilic sides face the surrounding medium, which is a fluid (e.g. water). (c) A vesicle which is
formed spontaneously with a phospholipid bilayer plasma membrane when these molecules are
dropped in water
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3.4.5 Actin Filaments and the Cytoskeleton

The cytoskeleton is a skeleton, or a scaffold, constituted of thread-like proteins within the cyto-
plasm of the cell, which gives the cell its shape, and supports directed transport of materials.
The actin filaments, aka microfilaments, are the thinnest of the three types of filaments of the
cytoskeleton. Intermediate filaments are thicker than actin filaments, more stable and more
strongly bound. The third and thickest type of cytoskeletal filaments is the microtubules, which
are, as discussed previously, important for efficient cell division and intracellular transport.

3.4.6 Nucleus

The nucleus is a central membrane-bounded cellular component which occupies about 10% of
the volume of the eukaryotic cell. It is bounded by the nuclear envelope, which consists of two
layers of bilayer lipid membranes that contain many relatively large nuclear pores allowing for
material exchange with the surrounding cytosol (Alberts et al., 2008).
The main purpose of the nucleus is to include, and to provide integrity for, the genetic mate-

rial formed of chromatin, which is the combination of the deoxyribonucleic acid (DNA) mole-
cules and the proteins packaging it. The genetic material encodes the required information for
building all types of proteins needed by the cell in terms of their molecular structure, time of
synthesis, and abundance. In other words, the genetic material in the nucleus controls the cel-
lular biological processes while sensing and responding to the signals from the surrounding
medium. The next chapter discusses the structure of the genetic material and programmes in
more detail as they will be its core subject.
The most obvious sub-nuclear structure is the nucleolus (Figure 3.4). It is an area with high-

density aggregation of macromolecules rather than a membrane-bounded component, and it is
the factory of the ribosomal ribonucleic acid (rRNA) (Alberts et al., 2008), which will be dis-
cussed in the next chapter.

3.4.7 Vesicles

The vesicle is a bubble bounded by a bilayer phospholipid membrane. Vesicles are important
for importing, exporting and transporting molecules to, from and within the cell. The molecules
being carried by a vesicle for such purposes are referred to as the cargo. Figure 3.6a, b, and c
summarise three important processes undertaken with the aid of vesicles, namely endocytosis,
exocytosis and vesicular transport, respectively.

Endocytosis is the process of importing molecules from the extracellular space to the interior
of the cell. It is done by internalising a patch of the plasma membrane which forms a vesicle
enclosing the molecules coming from the extracellular space, and then the vesicle is detached
from the cell membrane to be released to the cytosol (Figure 3.6a). Exocytosis is the opposite
process which exports molecules from the cell to the extracellular space by the fusion of a vesi-
cle with the plasma membrane and opening its membrane from the extracellular side. Therefore
the vesicle disappears and its membrane becomes part of the cellular plasma membrane
(Figure 3.6b).

Vesicular transport allows for transporting molecules from one cellular compartment to
another. This is done by membrane budding from the donor compartment to form a vesicle
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carrying the molecules, which is released to the cytosol. Then the vesicle, with its cargo, is
fused with the membrane of the target compartment to release its cargo to it (Figure 3.6c).
The vesicle formed by endocytosis might be transported itself towards a specific subcellular

compartment to release its cargo to it. In this case, this cargo is effectively imported from the
extracellular space through endocytosis and then vesicularly transported to a specific target
compartment.

3.4.8 Ribosomes

The ribosomes, discovered in the 1950s (Roberts, 1958), are large complexes consisting of both
RNAs and proteins. The ribosomes are the protein factories in the cell, as they synthesise proteins
by translating the instructions carried by themessenger RNA (mRNA)molecules from the genome
residing in the nucleus. More details regarding this process are provided in the next chapter.
Ribosomes can be freely moving within the cytosol or be bound to a membrane, mainly the

endoplasmic reticulum (ER). The proteins synthesised by the free ribosomes are secreted
directly to the cytosol, while the proteins synthesised by the ribosomes bound to the ER are
inserted to ER itself and then may be transported to be used at another location or to be secreted
outside the cell.

3.4.9 Endoplasmic Reticulum

The ER is found in all eukaryotic cells, and it is a membrane which extends continuously from
the nuclear membrane to form a network of branching tubules and flattened sacs. The area of
the ER constitutes more than half of the total membrane area of the cell, and the single common
internal space enclosed by the ER and the nuclear membrane occupies about 10% of the volume
of the cell (Alberts et al., 2008).

(a) (c)

(b)
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Outside the cell Outside the cell

Cytosol Cytosol
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Cytosol Cytosol

Fusion

Cytosol

Donor compartment

Budding

Vesicle

Target compartment 

Figure 3.6 (a) Endocytosis: importing contents from the extracellular space. (b) Exocytosis: releasing
content to the extracellular space. (c) Vesicular transport: transporting contents from one cellular
compartment to another
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The functions of the ER in the cell are diverse. One notable function is related to the process
of manufacturing proteins, that is translation,which will be discussed in detail in the next chap-
ter. While synthesising many types of proteins, the protein-manufacturing machines, the
ribosomes, bind to the ER. These bound ribosomes give the ER a rough appearance, and there-
fore it is known as the rough ER. In contrast, the smooth ER is that which has no ribosomes
bound to it. Note that the ribosomes do not permanently bind to the rough ER, they are rather
bound and released continuously and dynamically.
When a ribosome finishes synthesising a protein and is released from the ER, one end of the

nascent protein is kept bound to the ER to be further processed. An important function of the ER
thereafter is to translocate this protein to its intended destination. This is done either by direct
contact of the destination organelle, for example, the mitochondria, with the ER, or via trans-
port vesicles which actively take the protein from the ER to its destination. For example, many
newly synthesised proteins and lipids are carried in this way from the ER to the neighbouring
Golgi apparatus, although their membranes are not physically connected.
The smooth ER has various functions which vary when different types of cells are consid-

ered. Synthesising the lipid components of the lipoprotein particles in the main liver cell type,
hepatocyte, depends on the enzymes located in the membrane of the smooth ER. These lipo-
protein particles are responsible for carrying lipids in the bloodstream to their destinations. This
justifies the fact that the smooth ER is significantly more abundant in this specialised type of
cells compared with other types. The smooth ER has many other tasks regarding Ca2+ storage,
lipid synthesis, transmembrane and water-soluble proteins synthesis, specialised functions to
the muscular cells and others.

3.4.10 Golgi Apparatus

The Golgi apparatus, named after the Italian physician Camillo Golgi, is a complex stack of
flattened membrane-bounded spaces located on the exit route from the ER. The Golgi serves as
a buffer which stores, modifies and dispatches the products released from the ER. It is also the
main cellular site for carbohydrate synthesis, including pectin and hemicellulose of the cell wall
in plants, and glycosaminoglycan of the extracellular matrix in animals.

3.4.11 Mitochondrion and the Energy of the Cell

Mitochondria are the power plants of the cells as they produce most of the energy carrier mole-
cules adenosine triphosphate (ATP). ATP is the molecular currency of energy in the cell; it is
produced by converting the most basic sugar, glucose, into other molecules with lower free
energy, where the released energy is stored in the chemical bonds of the ATP molecule.
ATP molecules are then consumed by the processes that require this energy.
Anaerobic glycolysis is a process that converts one molecule of glucose to the lower-energy

molecule of pyruvate while storing the released free energy in two molecules of ATP. This
process is carried out in the cytosol and can be found in all prokaryotic and eukaryotic species.
Despite that, the pyruvate molecule still has a significant amount of free energy to be released.
In eukaryotes, the resulting pyruvate is transported to the mitochondria to be further degraded
aerobically, that is, with the existence of oxygen molecules O2, to produce the basic molecules
of carbon dioxide CO2, water vapour H2O and released energy. This process of pyruvate
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oxidation is known as the citric acid cycle, or theKrebs cycle in reference to Hans Adolf Krebs,
winner of the 1953 Nobel Prize of Physiology, who finally identified this cycle in 1937 while at
the University of Sheffield.
Glycolysis followed by the citric acid cycle is known as aerobic respiration. The theoretical

upper limit of ATP production per glucose molecule through aerobic respiration is 38, but
owing to many mechanistic and structural complexities, the realistic yield was found to be
about 30, which is 15 times of what is produced by anaerobic respiration through glycolysis
only (Rich, 2003). Aerobic respiration also occurs in prokaryotes but within the cytosol as they
lack mitochondria.
Mitochondria play an important role in efficient glucose oxidation in eukaryotes. A single

eukaryotic cell typically includes many mitochondria, which in liver cells for example would
reach as many as 1000-2000 (Alberts et al., 2008). While mitochondria normally move within
the cytoplasm of the cell, some mitochondria might be fixed or highly concentrated in specific
areas within the cell where energy is unusually highly required. Examples are the areas of high
ATP consumption between the myofibrils in cardiac muscle cells and around the flagellum in a
sperm (Alberts et al., 2008).
Other roles of mitochondria include heat production (Mozo et al., 2005), calcium ions’ stor-

age (Miller, 1998), apoptosis (programmed cell death) (Green, 1998), regulation of metabolism
(McBride, Neuspiel and Wasiak, 2006), haem synthesis for haemoglobin production in RBCs
(Merryweather-Clarke et al., 2011), and others.

In terms of structure, the mitochondrion has two membranes, an inner membrane and an
outer membrane. The space between the two membranes is known as the intermembrane
space, and the space within the inner membrane is known as the matrix. Different interactions
within the processes carried out in the mitochondria occur in different parts of it. For example,
most of the citric acid cycle occurs inside the matrix. Indeed, the transportation of substrates
and products across both membranes is an essential part of any of those processes, and, in many
cases, partial understanding is what we have about the detailed mechanisms of such transpor-
tation (Schultz et al., 2010).

3.4.12 Lysosome

Lysosomes are the membrane-bounded organelles in which intracellular digestion of macro-
molecules occurs. For most efficient digestion, they maintain an acidic interior with pH of
about 4.5–5.0. About 40 different types of digestive enzymes are included within lysosomes.
By being encapsulated within the membrane of the lysosome, the cytosol of the cell is protected
from the digestive damage that those enzymes would do. Another layer of protection is the fact
that, even if those enzymes leak from the lysosome to the cytosol, they will not cause much
damage at the cytosolic pH of about 7.2 (Alberts et al., 2008).
The sources of the macromolecules digested by the lysosomes can be proteins, lipids, an

excess of and worn-out organelles, viruses and bacteria (Castro-Obregon, 2010). It is interest-
ing that when a eukaryotic cell faces starvation, it would digest its own components through a
process called autophagy where the lysosomes recycle such components and provide the cell
with their basic building blocks (Castro-Obregon, 2010).
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3.4.13 Peroxisome

Peroxisomes are membrane-bounded organelles which perform oxidation of various types of
molecules. Oxidation in this context is the removal of hydrogen atoms from the substrate mole-
cules. This occurs while oxygen O2 is present, and produces hydrogen peroxide (H2O2) by
binding the hydrogen released from the substrate molecule to the presenting oxygen. The name
of this organelle was derived from the name of that molecule, H2O2 (Alberts et al., 2008).

By such oxidation, the peroxisomes degrade very long chains of fatty acids, and detoxify
many toxic materials such as the alcohol ethanol. Therefore it plays an important role in the
liver to purify the materials entering the bloodstream (Alberts et al., 2008).

3.5 Discussion and Summary

Cells are the building blocks of organisms. They are either eukaryotic, with membrane-bound
nuclei and subcellular organelles, like protists, fungi, plants and animals, or prokaryotic, with
non-membrane-bound nucleoid regions and no subcellular organelles, like bacteria and archaea.
Organisms are either unicellular, where the whole organism is constituted of a single cell, like
bacteria, archaea and some fungi, or multicellular, where the organism is formed of many cells
of various types and roles, like plants, animals and some fungi.
Multicellular organisms start with a single cell, the zygote, which divides to produce multiple

cells. Those early-life cells are unspecialised cells which can differentiate into various types of
more specialised cells. By series of controlled division and differentiation, ultimately a com-
plete adult organism is formed with all required types of specialised cells.
The cell is surrounded by a cellular membrane which protects the interior of the cell and

allows for controlled exchange of materials with the extracellular space by the membrane-
transport proteins embedded in it. Outside the cell there is the extracellular matrix, which is
a scaffold on which the cells of a multicellular organism adhere, and inside the cell there is
the fluid cytosol and the solid filaments of the cytoskeleton. Those filaments give the cell
its shape and strength, and play roles in component transportation.
The complete set of information needed for growth, maintenance and duplication of a cell is

stored in the genetic material, which is protected by the nuclear double-membrane in eukaryotic
cells. Information from and to the nucleus is transmitted through molecules transported via the
nuclear pores that are scattered over the nuclear membrane. The cell includes many other types
of subcellular components. For instance, vesicles are involved in importing, exporting and
transporting molecules to, from and within the cell. Ribosomes with the assistance of the rough
ER produce proteins, the smooth ER produces lipids, Golgi apparatus produces carbohydrates
and mitochondria produce energy. Lysosomes are the cellular locations for digestion and sub-
strate recycling, while peroxisome degrades very long chains of fatty acids via oxidation. More-
over, the ER and the Golgi apparatus play roles in storing and transporting various types of
materials.
Not all cells have all of those types of components. For instance, prokaryotic cells lack mem-

brane-bound organelles like the nucleus, the ER, the Golgi apparatus, mitochondria and lyso-
somes. Additionally, plant cells and many prokaryotic cells have a cell wall, which is a tough
wall of a polysaccharide like cellulose. Plant cells also include a membrane-bound organelle
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known as the chloroplast, which intakes carbon dioxide, water and sunlight energy to produce
oxygen and sugars. By this process, plants synthesise the sugars needed for energy production.
Understanding the physiology of the cell is an important aspect, but a similarly important

aspect for bioinformaticians is to understand the genetic programmes which control the cellular
processes, and this will be the topic of the next chapter.
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4
Central Dogma of Molecular
Biology

4.1 Introduction

Cells are autonomous self-replicating systems which are controlled by extremely sophisticated
and complex genetic programmes. The central dogma of molecular biology is the explanation
of the way in which the information of such programmes is encoded, decoded, maintained,
copied, and transmitted within the cell. This chapter discusses those different aspects of the
central dogma due to its direct relevance to most of the commonly generated high-throughput
datasets, which are, in their turn, the main subjects of analysis in bioinformatics. Microarray
datasets, next-generation sequencing (NGS) datasets, proteomic datasets, and chromatin
immunoprecipitation-on-chip (ChIP-on-chip) datasets are examples of such datasets. After
understanding the central dogma of molecular biology explained in this chapter, the reader will
have the required base to move smoothly to the next chapter which explains the aforementioned
types of datasets.

4.2 Central Dogma of Molecular Biology Overview

Figure 4.1 shows an abstract overview of the flow of information in cells as described by the
central dogma of molecular biology. The first cell of the organism, the zygote (see Chapter 3)
includes the complete set of genetic information stored in the form of a deoxyribonucleic acid
molecule (DNA). When this cell divides, its entire DNA is replicated such that each result-
ing cell, whether it was specialised or not, includes a complete copy of that set of genetic
information.
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Pieces of information are copied from the DNA molecule to be encoded in the form of
ribonucleic acid (RNA) molecules. This process is known as transcription (Figure 4.1). Most
of the patches of information copied from the DNA to RNA molecules are in reality codes for
protein synthesis, which are synthesised in a process known as translation, and then transported
to their places of functioning. As proteins are the molecules which perform most of the biolog-
ical functions in the cell, transcription followed by translation is the mean which transfers infor-
mation from their storage place in the DNA molecule to their field of application in the cell.
Although most of the RNA molecules are protein coding, some other types of RNA molecules
are involved directly, whilst being in their RNA form, in various molecular functions in the cell.
In special cases, RNA molecules are replicated, that is new RNA molecules are synthesised

by directly copying other RNA molecules. Moreover, reverse transcription, which is the
synthesis of a DNA molecule based on the information stored in an RNA molecule, occurs
in special cases, such as in some viruses known as retroviruses like HIV.

4.3 Proteins

We will introduce the three main types of macromolecules involved in the central dogma of
molecular biology in a different order to that of the natural flow of information shown in
Figure 4.1. We will start with proteins, as the main functioning and most dominant molecules
of the cell. Then, we will discuss the two nucleic acids, DNA and RNA. Proteins, nucleic acids
(DNA and RNA), and carbohydrates are the three main macromolecules constituting all known
types of cells. For their relatively less relevance to the central dogma of molecular biology, we
shall not cover carbohydrates in this chapter.
Proteins are long linear polymers of amino acids which are joined with peptide bonds. Poly-

mers are large molecules, that is macromolecules, which consist of a large number of repeatedly
joined units called monomers. In the case of proteins, amino acids joined with peptide bonds
represent those monomers (Figure 4.2). Thus, proteins belong to the family of molecules
known as polypeptides. The protein is that biologically meaningful polypeptide molecule
which has a stable conformation in contrast to any arbitrary chain of amino acids.
Twenty different amino acids have been found in the living cells, and are listed in Table 4.1.

Each of the 20 amino acids is referred to with its name, one-letter symbol or a three-letter sym-
bol. Moreover, different amino acids are different in terms of their charge and polarity. Five
amino acids are charged, and therefore they are water-soluble; three of them are positively
charged (basic) and two are negatively charged (acidic). Five amino acids are polar but
uncharged, and the ten remaining amino acids are nonpolar.

DNA
replication

RNA
replication

RNA ProteinDNA
Transcription Translation

Only in special cases
Reverse transcription

Figure 4.1 Overview of the central dogma of molecular biology: information flow in cells

34 Integrative Cluster Analysis in Bioinformatics



Lengths of proteins vary widely. Neidigh and colleagues were able to design a stable 20-amino
acid-length protein-like polypeptide (Neidigh, Fesinmeyer and Andersen, 2002). On the other
hand, the largest known protein, with more than 38 000 amino acids, is the giant protein titin,
which functions as a molecular spring contributing to the elasticity of muscles in humans (Bang
et al., 2001; Opitz et al., 2003). The average length of proteins in the eukaryote Saccharomyces
cerevisiae, that is baker’s yeast, is about 400–450 amino acids (Harrison et al., 2003; Brocchieri
and Karlin, 2005). In contrast, bacteria and archaea have average protein lengths of about
250-300 amino acids (Brocchieri and Karlin, 2005).
As for the number of different proteins in species, it is between 20 000 and 25 000 in humans

(Collins et al., 2004), ~6300 in budding yeast, ~26 000 in the plant Arabidopsis thaliana (thale
cress), ~4300 in the Escherichia coli bacteria, and less than 500 in theMycoplasma genitalium
bacteria (Alberts et al., 2008). These numbers show the large variation between species in terms
of the number of proteins as well as their average length.
Although proteins are linear chains of amino acids, they take specific stable 3-D structures

when put in water. This is due to the attractive and repulsive forces between the amino acids
constituting the protein, especially the charged and polarised ones (Figure 4.3a). This is also
affected by the sizes of the amino acids, and their structural occupancy of the 3-D space.
Accordingly, the chains of amino acids would form different types of helices, linear sheets
and other structures known as protein secondary structures (Figure 4.3b). The complete protein
might contain many of these secondary structures formed at different patches of its sequence,
which in total form the complete 3-D structure of that protein (Figure 4.3b).

Table 4.1 The 20 amino acids

Symbol Name Charge and polarity Symbol Name Charge

K (Lys) Lysine Basic A (Ala) Alanine Nonpolar
R (Arg) Arginine Basic V (Val) Valine Nonpolar
H (His) Histidine Basic L (Leu) Leucine Nonpolar
D (Asp) Aspartic acid Acidic I (Ile) Isoleucine Nonpolar
E (Glu) Glutamic acid Acidic P (Pro) Proline Nonpolar
N (Asn) Asparagine Uncharged polar F (Phe) Phenylalanine Nonpolar
Q (Gln) Glutamine Uncharged polar M (Met) Methionine Nonpolar
S (Ser) Serine Uncharged polar W (Trp) Tryptophan Nonpolar
T (Thr) Threonine Uncharged polar G (Gly) Glycine Nonpolar
Y (Tyr) Tyrosine Uncharged polar C (Cys) Cysteine Nonpolar

Amino acids

Polypeptide (protein)

Figure 4.2 The protein is a polymer of repeatedly joined amino acids
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Moreover, the structure of the protein can be affected by the presence of other molecules
whether they were proteins or other types of molecules (Figure 4.3c). These changes in struc-
ture might lead to changes in the biochemical properties of the protein, which might be nec-
essary to switch the protein into its active or inactive mode. Furthermore, and as demonstrated
in Figure 4.3d, many protein molecules may bind with each other to form a protein complex,

Protein complex

Active site

Proteins may bind with each other to form protein complexes

Protein
(linear thread of amino acids)

Protein structure can be
influenced by other molecules

(c)

(a) (b)

(d)

Two α-helices

Coiled coil
β-strands

β-sheet

Oppositely charged
amino acids attract each other

α-helices, coiled coils, and β-sheets
are examples of secondary protein structures

Figure 4.3 Protein structure. (a) Oppositely charged (or polarised) amino acids attract each other, which
greatly determines the 3-D structure of the protein. (b) Many secondary structures have been found
repeatedly in many proteins, such as helices, coils and sheets. (c) Presence of other molecules, which
might be other proteins, affects the 3-D structure of proteins. (d) Many proteins can bind with each
other to form protein complexes which can have new chemical and physical properties different from
those of their individual components (See insert for color representation of the figure)
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which gains new physical and chemical properties that allow it to achieve unique tasks which
could not be achieved by the individual protein molecules.

4.4 DNA

The DNA molecule that is a polymer of deoxyribonucleotide units (or simply nucleotide units)
encodes and stores the genetic programmes that control the various aspects of the cell. The
DNA encodes such information in the form of a linear series of symbols from a four-letter
language, namely G, A, C and T, which refer to the nitrogen-containing molecules guanine (G),
adenine (A), cytosine (C) and thymine (T), respectively (Figure 4.4b). Any of these four
molecules, known as nucleobases, or simply, bases, can be bound to the five-carbon sugar
deoxyribose to form a nucleoside (Figure 4.5a and Figure 4.4a, c). When a phosphate group

Components of the
nucleic acids DNA and RNA

Five-carbon sugar
(deoxyribose for DNA
or ribose for RNA)
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Figure 4.4 The DNA. (a) The three molecular components of nucleic acids. (b) The five types of
nucleobases. (c) Nucleoside. (d) Nucleotide. (e) Single strand of DNA. (f ) Double-stranded DNA.
(g) DNA double helix
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is added to the nucleoside, it becomes a nucleotide (Figure 4.4d), which represents the complete
monomer (single unit) of the DNA polymer (Figure 4.4d). Nucleosides are joined with each
other by phosphate groups to form a sugar-phosphate backbone, to each unit of which a base
is bound (Figure 4.4d, e and Figure 4.5c).
As shown in Figure 4.4e, the sugar-phosphate backbone of the DNA molecule is homoge-

neous, that is its units are identical. On the other hand, the bases which protrude from that
backbone differ from one unit to another, and their sequence represents the encoded genetic
information.
Owing to their differences in charge polarisation and size, A and T tend to bind to each

other with the weak hydrogen bond. Similarly do G and C. This renders the single strand of
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Figure 4.5 The two types of five-carbon sugar used in nucleic acids, namely (a) deoxyribose and
(b) ribose which are used in the DNA and the RNA, respectively. The five carbon atoms are numbered
and the position of difference between the two sugar rings is highlighted with circles. (c) A three-base
sequence of DNA or RNA showing the bases bound to carbon (1) and the phosphate groups joining
carbon (5) from one sugar with carbon (3) from the next sugar. The two terminals of the sequences are
consequently referred to as the 5 and the 3 ends, which are read as five-prime and three-prime ends,
respectively
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DNA shown in Figure 4.4e not in its most stable form. Nucleotides containing matching bases
bind to the bases of the single strand by weak hydrogen bonds, and bind with each via their
phosphate groups by the strong phosphodiester bonds. This process results in the synthesis
of a second DNA strand, which perfectly complements the original DNA strand. The two
strands are bound with each other by a large number of weak hydrogen bonds, which in total
provide the double-stranded molecule high stability (Figure 4.4f ). Furthermore, the two bound
strands twist to form a double helix, the form at which the DNA molecule is at its highest
stability (Figure 4.4g).
The fact that the DNA molecule has two complementary strands serves more important

objectives than providing high chemical stability. Since the two strands have a one-to-one
matching relationship, either strand can serve as a template to rebuild the other strand, which
is exactly how the DNA molecule is faithfully replicated. As shown in Figure 4.6, to replicate
the DNA molecule, its two strands are split by breaking the hydrogen bonds between their
bases. Then each of the two strands is used as a template which stimulates a new strand to
be synthesised to complement it. The result is two new double-stranded DNA molecules
identical to the original one. By this accurate replication, all of the cells within a single organ-
ism include identical genetic information as they were all produced by successive cell division
starting from a single cell, known as the zygote. The enzymes which perform the process of
polymerising these new strands of DNA that complement the old existing ones, belong to
the family of proteins called DNA polymerases. Double-stranded DNA molecules also provide
means for DNA repair, which is a process that runs actively as parts of the DNA are contin-
uously damaged due to many factors, such as radiations.

4.5 RNA

The RNA molecule is a polymer of ribonucleotide units. The structure of the RNA molecule is
identical to the single-stranded DNA shown in Figure 4.4e with two core differences. The first
difference is that the five-carbon sugar in RNA is the ribose in contrast to the deoxyribose in the
DNA (Figure 4.5). The second difference is that the nucleobase uracil (U) is used in RNA
instead of the nucleobase T (Figure 4.4b). Similar to T, U tends to form hydrogen bonds with
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A. RNA molecules are generated by copying patches of the DNA in the transcription process
(Figure 4.1 and Section 4.7). The resulting RNAmolecule contains the same information that is
stored in the copied DNA patch as it adopts a four-letter language similar to the DNA, indeed
while replacing T with U.
RNA molecules are single-stranded. Therefore, and due to the aforementioned tendency of

certain pairs of nucleobases to form hydrogen bonds, the single strand of RNA folds upon itself
in the 3-D space. This is homologous to what has been discussed about protein folding in
Section 4.3.
There are many types of RNAmolecules in terms of their task in the cell. The most dominant

type is themessenger RNA (mRNA), which serves as a carrier of the genetic information copied
from the DNA required to synthesise a protein molecule in a process known as translation
(Figure 4.1 and Section 4.8).
In contrast, the other types of RNA molecules are functional rather than mere carriers of

information as they function in various cellular processes. Ribosomal RNA (rRNA) molecules,
together with many proteins, form the ribosomes, which are the protein factories in the cell.
In their turn, the ribosomes utilise transfer RNA (tRNA) molecules to carry out the protein-
synthesis process, that is to translate the information carried by an mRNA molecule in order
to produce a new protein molecule. More about those types of RNA is covered while discussing
translation in Section 4.8.
The small nuclear RNA (snRNA) and the small nucleolar RNA (snoRNA) carry out post-

transcriptional processes. These are modifications that are applied to a nascent RNA molecule
before it can proceed into its actual biological tasks. MicroRNA (miRNA), small interfering
RNA (siRNA) and others are involved in gene regulation, which will be partially covered in
Section 4.7.

4.6 Genes

A gene is a fragment of the DNA which is transcribed, that is copied, into a single protein-
coding or functional RNA molecule. Genes are considered as the molecular units of heredity.
In some less common cases, a single gene is transcribed into an intermediate RNA molecule
that is spliced post-transcriptionally into more than one protein-coding or functional RNA
molecule.
Some genes have alleles, which are different versions of the same gene. Different alleles

generally result in different traits. For example, the colour of the eye differs from one person
to another because they possess different alleles for the genes whose products (coded proteins)
are responsible for the colour of the eye. Although this aspect of genes’ functions is common
amongst non-specialists, it is not the most dominant in reality. Most of the genes encode
proteins which are responsible for various commonly essential and favourable biological
processes amongst all of the species’ individuals such as cell growth, maintenance, reproduc-
tion, energy production, waste disposal, signalling and others. In other words, genes are not
merely those units which define the traits that distinguish one individual from another.
A gene’s sequence includes a five-prime untranslated region (5 UTR), three-prime untrans-

lated region (3 UTR), initiation (start) codon, termination (stop) codon, introns and exons.
When the gene is transcribed, and an RNA molecule is produced, those fragments of the
RNA sequence which correspond to the aforementioned parts of the gene are referred to with
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the same names. For example, the part of the RNA’s sequence which corresponds to an intron in
the gene’s sequence is also called an intron (Figure 4.8a, b).

4.7 Transcription and Post-transcriptional Processes

Transcription is the process of synthesising RNA molecules based on the codes stored in the
DNA. The protein complexes which perform this process are referred to as RNA polymerases.
Three types of RNA polymerases exist in eukaryotes, namely I, II and III, which allow for the
synthesis of different types of RNA molecules. Figure 4.7 summarises the process of the most
common type of transcription, which depends on RNA polymerase II. This RNA polymerase
transcribes all protein-coding genes as well as the genes producing snoRNAs, miRNAs,
siRNAs and most snRNAs.

The recruitment of the RNA polymerase protein complex to the start of transcription site is
controlled by proteins known as transcription factors (TFs). TFs are proteins which have the
ability to bind to specific DNA sequences in order to promote or block the recruitment of RNA
polymerases to transcribe the neighbouring gene(s). The TFs which promote transcription are
known as activators, while the ones which block transcription are known as repressors.
One family of TFs is referred to as general transcription factors (GTFs), because its member

proteins bind to specific DNA sequences that are found next to all types of genes, and their
presence is always necessary for the requirement of the RNA polymerases. However, most
of the TFs bind to DNA sequences that specifically exist next to a single gene or a few genes
in order to activate or repress them. The latter TFs control the differential transcription of dif-
ferent genes at different instances of time and in different types of cells.
The GTFs which are required to recruit RNA polymerase II were named as TFIIB, TFIID and

so on. TFIID recognises and binds to a specific DNA sequence known as TATA box, which
contains repeated alternations between the bases A and T, hence its name. TATA box exists
at about 25 bases upstream of the start of transcription sites of the genes transcribed by
RNA polymerase II (Figure 4.7a). As TFIID binds to the TATA box, it recruits other GTFs
including TFIIB, as well as the RNA polymerase II protein complex (Figure 4.7b).
The GTFs and the RNA polymerase II complex unwind the DNA double helix at the start

of the transcription site while breaking the hydrogen bonds which join its two strands. RNA
polymerase II encompasses one of the two split strands in a groove while keeping the other
strand away. This encompassed strand is the template based on which the new RNAmolecule
is to be synthesised (Figure 4.7c). The process of TFs’ binding next to the gene, recruiting the
RNA polymerase II complex, stabilising it, and starting transcribing the first few bases, is
known as transcription initiation (Figure 4.7a, b, c). More than 100 individual proteins
are involved in this process, including the GTFs and the sub-units of the RNA polymerase
II complex.
As RNA polymerase II has been stabilised in its place and few DNA bases have been tran-

scribed, the GTFs leave the site to be available for transcription of other genes. Before leaving
the site, TFIIH phosphorylates, that is adds phosphate groups to, two locations on the
C-terminal domain (CTD) of RNA polymerase II (Figure 4.7d). CTD extends like a tail outside
the main body of RNA polymerase II, and its phosphorylation changes its structure, which
provides the CTD itself with the ability to recruit other proteins that are needed to process
the emerging RNA molecule co-transcriptionally and post-transcriptionally.
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Figure 4.7 The transcription process. (a) The DNA double-helix before the initiation of transcription;
the TATA box motif, the gene, and the start of transcription location are marked. (b) TFIID binds to the
TATA motif. (c) Transcription initiation; TFIIB and the RNA polymerase II complex are recruited to the
start of transcription site, and then transcription of a few codons takes place. (d) Transcription elongation;
the CTD of the RNA polymerase II complex is phosphorylated to allow for the polymerase to slide over
the gene’s sequence, transcribing its codons and thus elongating the nascent RNA. (e) Transcription
termination; the RNA polymerase II complex is released from the DNA and the gene is completely
transcribed (See insert for color representation of the figure)
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After initiation, transcription enters the elongation phase, in which the RNA polymerase II
complex slides through the DNA like a zipper while reading the template strand and synthesis-
ing the RNA molecule by adding a single ribonucleotide at a time (Figure 4.7d). As transcrip-
tion reaches a transcription terminator, that is, a section of nucleic acid sequence that marks the
end of the gene, transcription terminates (Figure 4.7e).
Two classes of transcription terminators, namely Rho-independent and Rho-dependent,

have been discovered in prokaryotic genomes, while transcription termination in eukaryotes
is less understood.

4.7.1 Post-transcriptional Processes

The mRNA molecule delivered by transcription needs to be processed by a number of pro-
cesses in order to be ready for translation. Three main post-transcriptional processes are dis-
cussed in this section, namely 5 capping, RNA splicing, and 3 polyadenylation (Figure 4.8).
The 5 capping process starts before transcription terminates as the phosphorylated CTD

domain of the RNA polymerase II complex recruits the capping enzyme (CE) protein complex
to process the 5 end of the nascent RNA as it emerges from the RNA polymerase (Figure 4.7c,
d). The 5 cap is an altered 5 end of the RNA molecule which stabilises it, protects it from
degradation, and promotes its consequent translation into a protein (Figure 4.8). Uncapped
mRNA molecules are not considered by ribosomes for translation in eukaryotes.
The other end of the RNA, namely the 3 end, is polyadenylated. Polyadenylation is the addi-

tion of a long sequence of nucleotides with A bases to the 3 end of the nascent RNA. This
long tail of adenine bases (poly(A) tail) is important for the stability of the mRNA molecule,
and supports its export and transportation from the nucleus to the cytoplasm for translation
(Figure 4.8).
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Introns

Gene

Poly-A tail

Nucleus
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Figure 4.8 Post-transcriptional processes. (a) Transcription. (b) Three main post-transcriptional
processes; 5 capping, RNA splicing, and 3 polyadenylation. (c) Translation
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The other important post-transcriptional process is RNA splicing. The sequence of the
mRNA includes regions which are translated into the final protein product, and they are
called exons. On the other hand, there are untranslated regions (UTR) at both ends of the
mRNA known as the 5 UTR and the 3 UTR, and between the exons known as introns
(Figure 4.8b). The RNA splicing process splices out the introns while joining the exons
together such that the mature mRNA molecule includes the 5 UTR, exons and the 3 UTR,
in this respective order (Figure 4.8c). The terms introns, exons, 5 UTR and 3 UTR refer to
those sequences in the mRNA as well as in the corresponding gene in the DNA.

4.7.2 Gene-specific TFs

A large number of proteins can bind to specific sequences of the DNAwhich are found next to a
specific gene or a few genes. Those proteins may either stabilise the affinity of the RNA pol-
ymerase to the gene or interfere with it, which results in either promoting the transcription of the
corresponding gene or blocking it, respectively. Because those proteins influence the transcrip-
tion of genes, they are called TFs, and because they bind to specific gene(s), they are called
gene-specific, in contrast to the GTFs discussed earlier in this section.
The DNA sequence to which a transcription factor binds is referred to as its binding site. The

promoter of a gene is a sequence in its upstream sequence, that is before its start of transcription
site, which is a binding site of an activator TF. Without the required TF binding to this pro-
moter, the general TFs and the RNA polymerase would neither be able to bind to the gene’s
sequence nor to transcribe it. On the other hand, an enhancer is that DNA sequence which
might be upstream, downstream, or even within the gene itself, and might even be many thou-
sands of bases far distant, to which a transcription factor binds and enhances the level of tran-
scription of the gene. The TFs which bind to the enhancers tend to interact with those binding
to the promoters as well as with the RNA polymerase itself. Some TFs are formed of single
proteins, while many others are protein complexes.

4.7.3 Post-transcriptional Regulation

One of the recently emerging aspects of gene regulation is post-transcriptional regulation.
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) play an important role at this
stage. At their mature usable state, both are short sequences of RNA which perfectly or mostly
complement a patch of the sequence of their target mRNA. Complementing the sequence in this
context is having a sequence of nucleobases which tend to form hydrogen bonds with the
sequence of the target, for example A binds to U, and C binds to G (see Section 4.5). Therefore,
as the target mRNA has been synthesised by transcription, the miRNA or the siRNA molecule
binds to it at their matching sequence patch, leading to either cleaving it or blocking its
translation. The net result is that those miRNAs or siRNAs silence or down-regulate their
target genes. The main difference between miRNAs and siRNAs is that the first is produced
endogenously, that is within the cell itself, while the latter is injected into the cell from an exog-
enous source such as a virus. Cells use miRNAs, as well as other ways of post-transcriptional
regulation, to control the amounts of specific mRNA molecules, and therefore their protein
products.
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4.8 Translation and Post-translational Processes

Translation is the process of synthesising a protein molecule based on the information stored in
an mRNA molecule. Various types of RNA molecules and proteins cooperate to translate the
information in the mRNA into a protein accurately and efficiently.

4.8.1 The Genetic Code

The mapping between the four-letter language used in the mRNA (A, U, G, C) and the twenty-
letter language used in the proteins (Table 4.1), which is known as the genetic code, was dec-
iphered in the early 1960s. Three nucleobases are needed, and are what is actually used, to
encode for a single amino acid. This is because each base has four options, and therefore three
bases can have any of 43 = 64 combinations, which exceed the needed 20 different types of
amino acids. If only two bases were to be used, they can provide up to 42 = 16 combinations,
which are not sufficient. A triplet of mRNA bases which are translated into an amino acid is
known as a codon. As illustrated, there are 64 codons to encode for 20 amino acids, and thus
many amino acids have more than one codon encoding for them. The complete genetic code is
shown in Table 4.2.
It can be seen in Table 4.2 that the 64 different codons encode for 20 different amino acids in

addition to two punctuation marks, namely start and stop. In an overview, translation scans the
mRNA from its beginning until the start codon is allocated. Then, triplets of bases are read one
after another while adding amino acids to an elongating protein accordingly. Once a stop codon
is met, translation terminates. One can notice that the start codon, AUG, encodes for the amino

Table 4.2 The genetic code: mapping the three-base mRNA codons to their corresponding amino acids

First base (5 end)

Second base

Third base (3 end)U C A G

U F S Y C U
F S Y C C
L S STOP STOP A
L S STOP W G

C L P H R U
L P H R C
L P Q R A
L P Q R G

A I T N S U
I T N S C
I T K R A

M+ START T K R G

G V A D G U
V A D G C
V A E G A
V A E G G
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acid methionine (M) as well. The fact is that its first occurrence in the mRNA serves as the start
of translation site, while its consequent occurrences merely encode for M.

4.8.2 tRNA and Ribosomes

tRNA molecules, which are transcribed by RNA polymerase III, represent one important type
of functional RNA molecules that participate in translation. Tens to hundreds of different types
of tRNA exist in species from bacteria to humans. They are synthesised by RNA polymerase III
followed by many post-transcriptional modifications such as trimming, chemical modifica-
tions, sequence editing and others. A mature tRNAmolecule is about 80 nucleobases long with
the affinity to a specific codon, that is three mRNA nucleobases, at one of its ends, and to their
corresponding amino acid at the other end. An iconic example of a tRNA molecule decoding
for the amino acid tryptophan (W) is shown in Figure 4.9.
Ribosomes are the protein factories in cells as translation takes place in them. They are

formed of two sub-units, the large ribosomal sub-unit and the small ribosomal sub-unit
(Figure 4.10a). In eukaryotes, the large sub-unit is formed of three rRNA molecules and about
50 proteins while the small sub-unit is formed of one rRNA molecule and about 33 proteins.

Amino acid
(tryptophan (W))

tRNA

W

C
C

C AG U G G
G

mRNA

Figure 4.9 A tRNA molecule with the specific affinity to the amino acid W from one end, and to the
mRNA sequence UGG from the other end

(a) Ribosomal subunit (b) Ribosomal tRNA sites

Large subunit

Small subunit
E-site P-site A-site

Figure 4.10 (a) Ribosomal large and small sub-units. (b) The three ribosomal sites of tRNA binding, the
E, P and A
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The numbers of proteins in these sub-units in prokaryotes are lower than that. In terms of
weight, the rRNAmolecules contribute to two thirds of the weight while the proteins contribute
to one third. A typical eukaryotic cell includes millions of ribosomes, which are assembled in
the nucleolus after the required ribosomal proteins have been synthesised in the cytoplasm and
imported into the nucleus.
Both the eukaryotic and the prokaryotic ribosomes have similar structure and function

although they differ in size. The small ribosomal sub-unit serves as a framework for tRNA
accurate matching with the mRNA sequence being translated while the large ribosomal sub-
unit catalyses binding of the amino acids together with peptide bonds in order to form the
polypeptide, that is the protein. Three sites for tRNA binding are available in the ribosome,
the E-site, the P-site and the A-site (Figure 4.10b).

4.8.3 The Steps of Translation

The translation process is detailed in Figure 4.11 from its initiation to its termination. First, a
tRNA-M complex, that is a tRNA molecule with an M amino acid bound to it, is loaded at the
P-site of a small ribosomal sub-unit, and then the small sub-unit with its load is loaded next to
the 5 end of the target mRNA, marked with the existence of the 5 cap [Figure 4.11 (step 1)]. If
the mRNA was not capped, the small ribosomal sub-unit would not recognise it, and therefore
the translation process would not initiate. No tRNA-amino-acid complex other than the tRNA-
M can bind with stability to a small ribosomal unit without being combined with the large
sub-unit. In fact, additional proteins, known as the eukaryotic initiation factors (eIFs), are
loaded with the small sub-unit and the tRNA-M to the 5 end of the mRNAmolecule to support
the initiation of translation.
Next, the small ribosomal sub-unit with its load slide on the mRNA sequence until the tRNA-

M complex meets its matching codon, namely the start (initiation) codon AUG [Figure 4.11
(step 2)]. At this stage, the large ribosomal sub-unit is loaded [Figure 4.11 (step 3)]. The codon
following the start codon resides now at the base of the A-site of the assembled ribosome, and
in the example demonstrated in Figure 4.11, it is UGG coding for the amino acid W. Conse-
quently, a matching tRNA-W complex is loaded to the ribosome’s A-site and binds to the
mRNA’s UGG codon [Figure 4.11 (step 4)]. As mentioned earlier, the small sub-unit serves
as a framework for such stable binding. In its turn, the large sub-unit catalyses the formation
of a peptide bond between the amino acid (M) at the P-site and the amino acid (W) at the A-site
while releasing the amino acid (M) from its associated tRNA molecule [Figure 4.11 (step 5)].
Various conformational modifications happen to the two ribosomal sub-units which let them

slide over the mRNA molecule for three nucleobases (one codon). After this sophisticated
movement, the two tRNA molecules included within the ribosome become residing at the
E-site and the P-site instead of the P-site and the A-site, respectively [Figure 4.11 (step 6)].
Consequently, a codon enters the base of the free A-site, which is in this example the UUU
codon encoding for the amino acid phenylalanine (F). Amatching tRNA-F complex then enters
the A-site of the ribosome and binds to the underlining mRNA’s codon while the tRNA in the
E-site exits the ribosome [Figure 4.11 (step 7)].
A new peptide bond is formed between the most recently added amino acid (W) and the

following amino acid (F), which results in a short polypeptide chain (protein) emerging from
the ribosome [Figure 4.11 (step 8)]. Note that the most recently added amino acid is always
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kept bound to its corresponding tRNA molecule. Again, and through complex series of con-
formational modifications, the ribosome slides for one more codon towards the 3 end of the
mRNA (towards the poly(A) tail) [Figure 4.11 (step 9)].
The steps 7–9, which are similar to the steps 3–6 except that there was no tRNA molecule

initially at the E-site, are referred to as the translation cycle. Every time they are repeated, the
ribosome slides for one more codon over the mRNA molecule, and a new amino acid is added
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Figure 4.11 The translation process from initiation to termination (See insert for color representation
of the figure)
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to the nascent polypeptide (protein) chain. The rate of translation varies from about two to
20 amino acids per second for some eukaryotic species and bacteria, respectively.
The translation cycle terminates when it faces a stop codon. As shown in Table 4.2, there are

three stop codons in the genetic code, namely UAA, UAG and UGA. Step 10 in Figure 4.11
shows a long nascent protein emerging from the ribosome after many repetitions of the trans-
lation cycle where the next codon, that is the one at the base of the A-site, is the stop codon
UAA. A special protein, known as release factor, recognises the stop codon in the mRNA
sequence, and binds to it once it is at the A-site of the ribosome [Figure 4.11 (step 11)]. This
causes the protein to be unbound from the tRNA molecule residing at the P-site, and leads to
the disassembly of the two ribosomal sub-units, the tRNA molecules, the release factor, the
mRNA, and the newly synthesised protein [Figure 4.11 (step 12)].

4.8.4 Polyribosomes (Polysomes)

For higher efficiency and throughput, as soon as the ribosome slides away from the start codon
for a sufficient number of codons, another ribosome assembles at the 5 end of the same mRNA
molecule. By this mechanism, multiple ribosomes pursue translation for the same mRNA
molecule simultaneously, each residing at a different patch of the mRNA sequence, and there-
fore at a different stage of translation. These multiple ribosomes are called a polyribosome, or a
polysome (Figure 4.12). Moreover, and to increase the efficiency even more, the 3 poly(A) tail
is joined with the 5 cap of the mRNA by a number of binding proteins to form a loop of trans-
lating ribosomes. In this manner, the ribosome which is released from the 3 end of the mRNA
is at a very appropriate location to reassemble at the 5 end, and consequently to synthesise
another copy of the target protein (Figure 4.12).

Poly(A) tail

Binding
proteins

5′ cap

Ribosomes
movement

Nascent
proteins

mRNA

Figure 4.12 Polyribosomes (polysomes): multiple ribosomes translate the same mRNA molecule in a
pipeline

49Central Dogma of Molecular Biology



4.8.5 Post-translational Processes

After translation, the protein undergoes many modifications before becoming a mature func-
tional protein. One important process is protein folding, in which the protein’s linear chain of
amino acids folds upon itself to settle at a stable 3-D conformation. This was discussed in
details in Section 4.3; see Figure 4.3.
Other modifications include binding of functional chemical groups to the protein chain, such

as phosphate, lipids, carbohydrates and others. Such modifications might lead to conforma-
tional changes, as illustrated in Figure 4.3c. Moreover, as all nascent proteins start with the
amino acid M because its codon represents the start codon (Figure 4.11, step 2), this starting
amino acid is removed in post-translational modification from many proteins.
If the ribosomes were bound to the surface of the rough endoplasmic reticulum, as illustrated

in the previous chapter, the nascent protein emerges from the large ribosomal sub-unit into the
endoplasmic reticulum immediately. Then, it is transported, through the Golgi apparatus, vesi-
cles or other means, to its destination.

4.9 Discussion and Summary

Most of the functions in living cells are carried out by the most dominant macromolecule type,
proteins. Proteins are linear chains of amino acids bound to each other with peptide bonds.
There are 20 different types of amino acids (Table 4.1), which represent the alphabet from
which the different types of proteins are composed. Attractive and repulsive forces between
different amino acids within the protein chain cause this linear chain to fold upon itself to form
a specific stable structure in the 3-D space. Differences in physical structures and chemical
properties of different types of proteins lead to the differences in their functions within the cell.
The complete set of information needed to determine when, where and how to synthesise all

types of proteins within an organism, as well as to perform the other cellular functions, is stored
in the DNAmolecule, which resides in the nucleus of the eukaryotic cell or the nucleoid region
of the prokaryotic cell. The DNA is a double-stranded molecule where each strand is a linear
sequence of nucleobases. Four types of nucleobases are found in DNA, and therefore the DNA
stores information using a four-letter language. The two strands of the DNA are complemen-
tary, such that each one of them can be used as a template to reform the other one accurately.
By unbinding the two strands from each other and then building new complementary strands
for each, the cell replicates its genetic material, that is the DNA, when it divides into two
daughter cells.
The gene is that patch of the DNA sequence which includes complete information on

synthesising a single type of protein or functional RNA molecules. However, the gene in the
DNA is not used directly for protein synthesis; it is rather copied into an RNAmolecule, which
is exported from the nucleus of eukaryotes and then used for protein synthesis. The RNA mol-
ecule is a single-stranded nucleic acid composed of nucleobases of four different types. It is very
similar to the structure of a single strand ofDNAexcept in a subtle difference in its chemical form
(in its five-carbon sugar part), and in that it uses the nucleobase U instead of T. The process of
copying that DNA patch, that is the gene, into an RNA molecule is known as transcription.
After transcription, the nascent RNA molecule is processed with post-transcriptional pro-

cesses such as splicing, adding a cap at its 5 end (the first end), and adding a polyadenine tail
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to its 3 end (the other end). These processes stabilise the RNA molecule, help in its transpor-
tation within the cell to the place in which it is to be used, and assist its usage in synthesising
proteins.
There are different types of RNA molecules, the most common one of which is the mRNA,

which functions as a carrier of the genetic information in the DNAmolecule required to synthe-
sise a protein. Other types of RNAs are known as functional RNAmolecules, where they them-
selves perform cellular functions without being translated into proteins. Examples of these
include ribosomal RNAs (rRNAs), which constitute about two thirds of the protein factories
known as ribosomes, transfer RNAs (tRNAs), which cooperate with the ribosomes in trans-
lating mRNAs into proteins, and siRNAs and miRNAs, which both participate in post-
transcriptional regulation. The latter perform post-transcriptional regulation by interfering with
the newly synthesised mRNA molecules and blocking their translation into proteins; this helps
in regulating protein synthesis within the cell when the amounts of some proteins need to be
reduced at certain stages. Other types include snRNA, snoRNA and others and these participate
in various functions including processing and modifying other types of RNA molecules.
The mature mRNA molecule is merely a message from the DNA with the required informa-

tion for synthesising a protein molecule. Ribosomes identify these mRNA molecules, bind to
them at their 5 end (the first end), slide over them while translating their codes into nascent
proteins, and finally release them. Every three consecutive nucleobases in the mRNAmolecule
are called a codon, and are translated into a single amino acid in the generated protein. With
three nucleobases, each of which has one out of four possible symbols, there are 64 different
possible codons, encoding for 20 different types of amino acids, indeed with redundancy
(Table 4.2). Specific codons are preserved as start and stop codons, which mark starting
and ending points of translation within the mRNA molecule. After translation, the protein is
folded into its most chemically and physically stable 3-D shape, and is transported into its
destination where it shall perform its required biological functions.
To summarise the central dogma of molecular biology (Figure 4.1), the main source of

genetic information is the DNA molecule. This information is transmitted through generations
of cells and individuals through DNA replication, where two daughter DNAmolecules are pro-
duced identical to the mother DNA. Within a cell, the information in the DNA is transmitted to
RNA molecules via transcription. In some cases those RNA molecules are functional and will
perform biological tasks themselves, but in most of the cases the RNA molecules are messages
of information copied from the DNA and translated into protein molecules. The proteins then
perform most of the biological functions required by the cell.
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5
High-throughput Technologies

5.1 Introduction

Decades ago, experimental biology was based on technologies which measure or edit different
biological parameters at a low-throughput level, that is, while considering single or few objects
and parameters at any single technique’s application. Examples of those techniques include
mass spectrometry, which dates back to the beginning of the twentieth century (Aston,
1919). Southern blotting, which was proposed by the English molecular biologist Sir Edwin
Southern (1975), detects a specific given DNA sequence in DNA samples. Following that,
many blotting methods were proposed such as northern blotting (Alwine, Kemp and Stark,
1977) and western blotting (Burnette, 1981) which detect a specific RNA or a specific protein
in a sample, respectively. Chromatin immunoprecipitation (ChIP) is another type of those tech-
niques, which detects specific DNA-protein binding (Gilmour and Lis, 1985).
In the last couple of decades, new technologies have emerged extending some of the afore-

mentioned low-throughput technologies, allowing for the measurement of different biolog-
ical parameters at a high-throughput level, that is, while considering large numbers of objects
or parameters at any single-technique application. For example, DNA microarrays extend
Southern blots by detecting the relative abundance of thousands of different specific DNA
sequences in a DNA sample. ChIP-chip extends ChIP by combining it with the microarray
technology to identify the genome-wide DNA sequences to which some proteins of inter-
est bind.
As understanding the mechanisms adopted by high-throughput technologies is important

for successful and reliable analysis of their data, we cover a number of the most common
high-throughput technologies in this chapter, including DNA and protein microarrays,
RNA next-generation sequencing (NGS), ChIP-chip and others.
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5.2 Microarrays

Microarrays are high-density chips of probes, where each probe has high affinity to be bound
by a specific target molecule and low affinity to be bound by the rest of the molecules possibly
existing in the provided sample (Figure 5.1). The sample of molecules to be processed is dyed
with fluorescent labels, and then exposed to the microarray (Figure 5.1a, b). The probes reflect
the relative amounts of their target molecules by radiating respective levels of intensity caused
by different levels of dyed target binding (Figure 5.1c). After that, the microarray chip is
scanned and image-processed to quantify the intensities of those probes (Figure 5.1d), which
ideally will be linearly proportional to the amounts of their target molecules in the sample
(Figure 5.1e).

The history of microarrays dates back to 1983 when Tse-Wen Chang proposed coating anti-
bodies with different specificities to different cell surface antigens in a matrix-like manner on a
small glass chip in order to measure the relative proportions of cells with different surface anti-
gens in a mixed population of cells (Chang, 1983). However, many other types of microarrays
emerged thereafter, like DNA microarrays, which are the most widely spread type of micro-
arrays, protein microarrays, carbohydrate microarrays and others. Moreover, many modern
high-throughput technologies involve microarrays in their pipelines, such as ChIP-chip, which
combines ChIP with the DNA microarray “chip” technology.

5.2.1 DNAMicroarrays

DNA microarrays, representing the most common type of microarrays, are generally used to
measure the expression of a large number of genes in a population of cells. The expression of a
gene refers to the amount of transcripts (RNA) transcribed from it. The population of RNA
molecules are reverse transcribed to form complementary DNA (cDNA) molecules, which
are dyed with fluorescent labels and exposed to the microarray.
Different types of microarrays use different approaches of probe organisation. Spotted

cDNA microarrays contain probes whose sequences represent complete complementary
sequences of the target mRNAmolecules. On the other hand, oligonucleotide microarrays con-
tain probe-sets of 10–25 probes in each. Each probe-set corresponds to one mRNA/gene
sequence where each of its probes has a short oligonucleotide sequence complementary to a
specific fragment of the target mRNAmolecule. Each of these short sequences usually contains
around 25 bases.
Many microarray platforms were designed, and the most commonly used are Affymetrix,

Agilent and Illumina (Calza and Pawitan, 2010). Affymetrix microarrays are oligonucleotide
arrays with probe sets containing 11–20 probe-pairs each of which is 25 bases long. Each
probe-pair has two probes, which are called perfect match (PM) and mismatch (MM) respec-
tively. The PM probe has the exact target sequence while the MM has that same exact sequence
but with a single altered base at the middle of the probe’s sequence, that is, at the base number
13 (out of 25). The reason for this setup is explained in Chapter 7 (Wu, 2009).

Another variation in the design of DNAmicroarrays is the number of channels – either one or
two channels; also called one- or two-colour microarrays. In the case of two-channel arrays,
two different mRNA samples are used, which are labelled with different fluorescent labels that
radiate different orthogonal colours (usually Cy3 for green and Cy5 for red). After
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Figure 5.1 Pipeline of analysis for a theoretical four-probe general microarray. This pipeline applies to
any type of microarray such as DNA and protein microarrays, which in reality have many more probes
than four. (a) The molecules in the experimental sample (e.g. mRNAs, proteins, etc.) are labelled with
fluorescent labels, and are then exposed to the microarray chip. (b) A microarray chip with four
probes that have specific affinity to four different types of target molecules. (c) Ideally, the labelled
molecules bind to their relevant probes with levels proportional to their amounts in the sample. (d)
The microarray is scanned to produce an image with spots of different intensities reflecting the levels
of target molecules’ binding. (e) After image processing, the average intensities of probes are recorded
as quantified measurements for the relative abundance of target molecules in the sample



hybridisation and scanning, each probe’s colour is quantified into two intensities for the green
and the red components respectively. The ratio between these two intensities reflects the ratio of
the abundance of the corresponding gene in the two provided samples. These samples are usu-
ally from different biological phenotypes (e.g. cancer cells versus normal cells), or one of them
can be an invariant control sample which serves as a reference for the other one.
The variabilities in the many intermediate steps between the real amount of mRNA in the

sample and the final quantified intensity stimulate questioning the reliability of these raw gene
expression values. Such variabilities can be caused by the preparation of the biological sample,
fluorescent labelling, specific hybridisation, non-specific hybridisation, scanning, image pro-
cessing and others (Calza and Pawitan, 2010). Moreover, in most of the microarray datasets,
many mRNA samples are taken and measured by multiple microarray chips/slides; these sam-
ples can be from different types of tissues (e.g. cancer and normal tissues), at different chron-
ological stages or time points within a biological process, or from different samples belonging
to different biological conditions. Such aspects are targeted by normalisation methods, which
are thoroughly discussed in Chapter 7.

5.2.2 Protein Microarrays

There are two main types of protein microarrays, analytical and functional. Analytical protein
microarrays are arrays of antibody probes that have specific affinity to different types of pro-
teins. By exposing proteins dyed with fluorescent labels to such arrays, the expression
(abundance) levels of proteins in a population of cells are measured. In contrast, the probes
of functional protein microarrays are actual protein molecules rather than antibodies to pro-
teins. As in the case of DNAmicroarrays, protein microarrays can be one- or two-colour arrays
(Haab, Dunham and Brown, 2001). Various objectives can be achieved by using functional
protein microarrays by considering different types of target molecules. For example, exposing
a sample of lipid molecules with fluorescent labels to that array of protein probes reveals the
levels of protein–lipid interactions at the proteome-wide level. Similarly, if the exposed sample
of labelled molecules included other proteins, DNA fragments, drugs, small molecules or
peptides, the functional array would measure protein–protein, protein–DNA, protein–small
molecules or protein–peptide interactions, respectively (Zhu et al., 2001; Chen and Zhu,
2006; Pratsch, Wellhausen and Seitz, 2014).
One of the main challenges regarding analytical protein microarrays, which are extensions of

antibody microarrays, is the design of protein antibodies that have high sensitivity and spec-
ificity, that is, any single antibody in the array should have significantly high affinity to its
target protein and significantly low affinity to the rest of the proteins. Generally, there is no
similar problem in DNA microarrays because the best probe which detects a DNA sequence
is its complementary DNA sequence, while proteins do not possess such a global complemen-
tary rule. Until today, there is no analytical protein microarray which covers the entire proteome
of a model species like E. coli bacteria, S. cerevisiae yeast or humans. Nevertheless, arrays with
several hundreds of protein antibodies have already been prepared for commercial use, like the
arrays KAM-850, Panorama@ Antibody Array – XPRESS Profiler725, and others. However,
the number of proteins from different species whose specific antibodies have been identified is
increasing.
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5.2.3 Carbohydrate Microarrays (Glycoarrays)

The glycome is the complete set of glycans (carbohydrates) in an organism. A glycan is a chain
of monosaccharides (monosugars) linked glycosidically. It was estimated that the human gly-
come includes more than 7000 different glycan-recognition determinants (Song et al., 2014).
Glycan microarrays (glycoarrays) are functional, that is, they are arrays of glycan molecules
immobilised on a solid surface, which are exposed to different types of molecules, mainly pro-
teins, to identify their levels of glyco-binding (Laurent, Voglmeir and Flitsch, 2008).

Glycoarrays have been used to serve many objectives. The most notable one is the investi-
gation of glycan–protein interactions through the identification of carbohydrate-binding pro-
teins (CBPs) and their glycan ligands (Liu et al., 2007; Blixt and Westerlind, 2014; Palma
et al., 2014). Glycoproteins are proteins which are glycosylated, that is, one or more polysac-
charide chains (glycans) are bound to its amino-acid sequence. If the protein core is heavily
glycosylated such that the glyco- content of the resulting complex was more than the protein
content, it is called a proteoglycan. Glycoproteins and proteoglycans participate in many
processes in the cell including cell-surface structure and adhesion and immunity (Laurent,
Voglmeir and Flitsch, 2008; Arthur, Cummings and Stowell, 2014).
Glycoarrays are also involved in cell-adhesion studies, in which whole cells are exposed to

the glycoarrays to mimic and thereafter analyse cell–cell interface and interaction (Laurent,
Voglmeir and Flitsch, 2008). Other objectives of glycoarrays include the identification of anti-
body specificity to glycans (Liang et al., 2011; Galban-Horcajo et al., 2014), glycosyltrans-
ferase specificities (Laurent, Voglmeir and Flitsch, 2008), diagnosis (Geissner, Anish and
Seeberger, 2014), and others.

The current version (version 5.1) of the glycan microarray generated by the Consortium
for Functional Glycomics (www.functionalglycomics.org) represents just over 600 glycans,
comprising less than 10% of the complete glycome. Therefore, glycanmicroarrays will be greatly
enhanced by defining larger portions of the glycomes of humans and other model species, as well
as identifying the procedures needed for their synthesis or gathering. This has been responded to
by using the Shotgun Glycan Microarray (Song et al., 2011; Arthur, Cummings and Stowell,
2014). Additional glycoarrays challenges include glycan-immobilisation strategies (Laurent,
Voglmeir and Flitsch, 2008; Chevolot et al., 2014), and the proper glycan presentation and
orientation on the microarrays (Song et al., 2014).

5.2.4 Other Types of Microarrays

The idea of an array of micro-biochemical probes on a solid platform for various analytical and
functional studies is not limited to macromolecules such as nucleic acids, proteins and carbo-
hydrates (glycans); rather, it has been applied to other types of biochemical molecules. Small-
molecule microarrays (SMM) represent an example of a successful microarray platform for
small-molecule–protein interaction investigation (Hong et al., 2014). Peptides, which are short
chains of amino acids, were also arrayed (Voskuhl, Brinkmann and Jonkheijm, 2014). Peptides
and proteins are conventionally distinguished based on their length, where proteins generally
include hundreds of amino acids while peptides can be as short as including only two. On the
other side of the spectrum, complexes as large as whole cells were arrayed to detect antigen-
specific cells and their responsiveness (Chen and Davis, 2006).
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5.3 Next-generation Sequencing (NGS)

5.3.1 DNA Sequencing

is the process of identifying the ordered linear sequence of nucleobases in a given DNA strand.
Automated Sanger sequencing has been the most commonly used method for DNA sequencing
over the last couple of decades (Metzker, 2010), and it was used to produce the first and only
finished-grade human genome sequence (Collins et al., 2004). However, that generation of
sequencing methods has many limitations, mainly high cost and long running time. A class
of NGS methods has emerged in the last decade with the most appealing ability of producing
enormous amounts of sequencing data with low costs (Mardis, 2008; Metzker, 2010; Dijk,
Jaszczyszyn and Thermes, 2014).
NGS involves (i) template preparation, (ii) sequencing, and (iii) imaging. NumerousNGSmeth-

odswere designed by adopting variants of the techniques developed for each of these three steps. In
DNAsequencing, templates are prepared by fragmenting the providedDNAsample into short vec-
tors,whichare joinedwithknownadapter sequences that canbeboundbyuniversalprimers.Mostof
the NGS protocols amplify the template sequences by producing thousands to millions of copies
(clones) from each template to provide the following NGS steps with sufficient quantities of
DNA material (Metzker, 2010). Variants of the polymerase chain reaction (PCR) are normally
adopted to achieve this objective. However, PCR has been challenged for selective biases in
sequence amplification, andwas eithermodifiedor replacedwith other techniques likemultiple dis-
placement amplification (MDA) (Dijk, Jaszczyszyn and Thermes, 2014). Some other NGS proto-
colsweredesigned tonot requireamplification inorder toovercome thebiasesandmutationscaused
by the amplification step, but these protocols require, on the other hand, relatively large quantities of
input materials, which might not be always available (Dijk, Jaszczyszyn and Thermes, 2014).
Cyclic reversible termination (CRT) is one of the techniques used for sequencing (Metzker,

2010) (Figure 5.2). After fragmentation, the DNA fragments are ligated with known predefined
adapter sequences which support the immobilisation of the templates on a solid platform, nor-
mally made of glass (Figure 5.2c, d). Modified nucleotides are added with DNA polymerases to
the platform (Figure 5.2e). Those nucleotides possess two key features; they are labelled with
fluorescent labels which have four different colours corresponding to the four different nucleo-
bases A, T, G, and C and they have reversible polymerisation terminators which terminate poly-
merisation upon their addition by blocking the addition of more nucleotides. The platform is
then washed to remove all of the extra unbound nucleotides. At this stage, each template would
have a single fluorescent nucleotide corresponding to the complement of the first nucleotide in
the target sequence (Figure 5.2f). Imaging is performed to store a snapshot of this first nucle-
otide in the sequence of each of the templates (Figure 5.2f).
After imaging, the fluorescent labels are cleaved and the terminators are reversed to result in

templates with non-fluorescent complement strands which are unblocked and are ready to
accept the next nucleotide in the sequence (Figure 5.2 g). The step in Figure 5.2e is repeated
for a second cycle of modified nucleotides’ addition (Figure 5.2 h). The nucleotides comple-
menting the second nucleotides in the template sequences bind to the templates and, similar to
the first cycle, they terminate polymerisation, that is, they block the template from accepting
more nucleotides (Figure 5.2i). Again, the platform is washed and an image is taken
(Figure 5.2i). As the steps in Figure 5.2 g-i are repeated, series of snapshots are produced cap-
turing the sequence of all of the hundreds of millions of templates immobilised on the platform
in parallel (Metzker, 2010).
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Some NGS platforms, such as Illumina/Solexa, consider four-colour labelling as shown in
Figure 5.2. Other platforms, such as Helicos BioSciences, consider one-colour labelling (not
shown in the figure). In the latter case, nucleotides of a specific type of base [e.g. adenine (A)]
are added in the first cycle. The added nucleotides will hybridise only with the templates whose
next sequence base is complemented by it, while the other templates will not be polymerised in
this cycle. After washing and imaging, the hybridised templates will show bright spots in the
image, while the other templates will show dark spots. Therefore, this snapshot provides binary
information regarding which templates have the adenine (A) base’s complement next in their
sequences. By providing different nucleotide types in consecutive cycles, the final series of
snapshots will include the complete information regarding the sequence of all of the tem-
plates (Metzker, 2010).
Other sequencing methods are considered in NGS protocols, other than the CRT, such as

sequencing by ligation, single-nucleotide addition (pyrosequencing) and real-time sequencing.
The latter does not consider nucleotides with polymerisation terminators; rather it measures the
fluorescence pulse in real time with sufficiently high sampling rate while series of nucleotides
are added to the template. This technique, used by Pacific Biosciences, can read longer
consecutive sequences but has higher error rates unless consensus reads are performed
(Metzker, 2010).
With NGS technologies, the cost of sequencing a whole genome has dropped significantly.

The estimated cost of the first, and only one until now, finished-grade human genome
sequenced in 2004 was US$300 million. Other whole human genomes have been sequenced
since then, but none at the finished-grade quality level. By now, the cost of sequencing a whole
human genome has reached around US$5000 (Hayden, 2014). The US National Human
Genome Research Institute (NHGRI) launched a huge grant scheme, which has the greatest
credit in the huge drop of sequencing costs. The future aim is to reach the $1000 whole-genome
limit, which opens the horizon for a much wider range of applications through feasible per-
sonal-genome sequencing (Pareek, Smoczynski and Tretyn, 2013).

5.3.2 RNA Sequencing (Transcripome Analysis)

RNA sequencing can be performed by reverse transcribing the RNA molecules, before or after
fragmentation, to produce cDNA molecules, which are sequenced as explained above. Never-
theless, some platforms sequence RNA templates directly without reverse transcription. One
major application of RNA sequencing is gene expression analysis as an alternative approach
to DNA microarrays (Mardis, 2008; Metzker, 2010; Dijk, Jaszczyszyn and Thermes, 2014).
First, mRNA molecules are selectively selected, or the rRNA molecules are selectively
depleted. This is because most of the RNA content belongs to the rRNA class while the pro-
tein-coding mRNAs are the main target of such analysis (Dijk, Jaszczyszyn and Thermes,
2014). Then, the sequenced mRNA templates are aligned with the sequences of the target gen-
ome’s genes in order to quantify the absolute or the relative number of transcripts per gene, that
is, the level of genetic expression.

NGS techniques surpass microarrays in their larger dynamic range, lower background noise,
higher sensitivity to low expression levels, and the ability to discover the expression of rare
RNA transcripts as well as splicing alternatives and variants even if their sequences have
not been previously discovered and stored (Mardis, 2008; Metzker, 2010; Mori et al.,
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2013). This latter capability facilitates transcriptomic analysis for non-model organisms and the
organisms that lack complete reference genomes, such as many microorganisms (Fang, Martin
and Wang, 2012).
Another important application of RNA sequencing is the sequencing of non-coding RNAs

(ncRNAs), which although have many key roles in the regulation of cellular processes, have
not been well understood yet (Mardis, 2008).

5.3.3 Metagenomics

Many environments, such as oceans, soil, buildings, the human body and others, include large
numbers of members from different species. Metagenomic analysis is the analysis of the
genetic material derived from an environment at its genomic scale. By sequencing such genetic
material and mapping it to libraries of known genomes, questions regarding as to which species
these samples belong to can be answered (Mardis, 2008; Metzker, 2010; Dijk, Jaszczyszyn and
Thermes, 2014). The analysis of the microbiome residing in any of those environments is
indeed targeted by metagenomics. The microbiome is the complete set of microorganisms that
reside in a specific environment (Kembel et al., 2014).

5.3.4 Other Applications of Sequencing

The relatively cheap high-throughput DNA sequencing offered by the NGS technologies
has stimulated many applications in genomics. Examples include studying the genome-wide
epigenetic modifications, such as methylation (MeDip-seq) (Ku et al., 2011; Dijk, Jaszczyszyn
and Thermes, 2014), exome sequencing, the analysis of DNase sensitivity (DNase-seq), the
analysis of DNA-associated proteins (ChIP-seq; discussed in Section 5.4) (Liang et al.,
2013), single-nucleotide polymorphisms (SNPs) and structural variants (SV) analysis
(Metzker, 2010), re-sequencing the human genome (Metzker, 2010), and sequencing personal
genomes (Metzker, 2010). The latter would have many benefits including the investigation
of the personal variants in the genome which are related to personal phenotypes in disease
or health.

5.4 ChIP on Microarrays and Sequencing

The chromatin is the combination of the DNA molecule and the proteins packaging it in the
nuclei of eukaryotic cells. Many proteins, such as chromatin-modifying proteins and transcrip-
tion factors, meet their roles in the cell through binding to the chromatin, whether that was by
direct binding to the DNA molecule or to the proteins packaging it. Such chromatin-binding
proteins can be selective in terms of the DNA sequence or the chromatin marks to which they
bind. For example, all of the non-generic transcription factors selectively bind to specific short
sequences of DNA (motifs) which reside close to those transcription factors’ target genes. The
identification of the proteins selectively binding to the proximities of specific genes greatly
enhances our understanding of gene regulation and the relations between the regulators and
their targets.

63High-throughput Technologies



ChIP is a technique by which the association of proteins with the chromatin is measured.
When combined with microarray chips (ChIP-chip) or DNA sequencing (ChIP-seq), high-
throughput data quantifying the levels and locations of a specific protein association with
the DNA are generated. The ChIP process starts by chemically cross-linking the DNA and
its associated proteins. Then, DNA, with its cross-linked proteins, is extracted from the nuclei
and fragmented. Antibodies to the specific protein(s) under investigation are used to immuno-
precipitate the fragments of DNA associated with this (those) specific protein(s) while filtering
out the rest of the DNA fragments. After that, the chemical cross-links are released to keep bare
DNA fragments, which are either exposed to a microarray chip (ChIP-chip) or sequenced
(ChIP-seq) in order to identify the DNA sequences (and nearby genes) that are associated
with that (those) protein(s) (Mardis, 2008; Liang et al., 2013; Pareek, Smoczynski and
Tretyn, 2013).

5.5 Discussion and Summary

Technological advancements in the last two decades have greatly boosted the rate of data gen-
eration. The consequence is the emergence of huge amounts of high-throughput datasets which
report various biological variables at very large scales.
One of the most widely adopted high-throughput techniques is the microarray. This is a small

chip on which a large number (tens to hundreds of thousands) of immobilised specific probes
are implanted. A sample of molecules dyed with fluorescent labels is exposed to this chip.
Depending on their chemical and physical properties, some of those molecules would bind
to some of the probes. When the chip is scanned, probes bound by more fluorescent molecules
show light signals with higher intensities. Finally, the intensities are reported as values
quantifying the levels of specific association between the sample of molecules and the specific
corresponding probes. DNA microarrays and protein analytical microarrays (antibody micro-
arrays) are used to measure the levels of gene expression and protein expression (abundance),
respectively. Functional protein microarrays, carbohydrate microarrays, microRNA microar-
rays, SMM and many other types of microarrays are tools for high-throughput screening of
the functions of various types of biological molecules in the cell.
Sequencing methods have been used for more than two decades to identify the nucleobase-

by-nucleobase sequences of whole genomes or fragments of DNA or RNA molecules. How-
ever, it had been very expensive before the introduction of the modern NGS techniques. Thanks
to these NGS techniques, the cost of human genome sequencing dropped (in US dollar terms)
from hundreds of millions to a few thousands in a decade, and the aim is to reach the $1000 line,
which allows for numerous important applications that had been infeasible ten years ago.
NGS techniques compete with microarrays in some areas like gene expression analysis and

high-throughput ChIP. The latter is a technique which investigates the locations and levels of
protein association with the DNA. ChIP analysis, whether by using microarray chips (ChIP-
chip) or sequencing techniques (ChIP-seq), produces high-throughput data that enhance our
understanding of key processes in gene regulation, epigenetics and others.
Taken together, microarrays, NGS and other techniques of high-throughput data generation

are being heavily and increasingly used to produce massive amounts of raw datasets. Addition-
ally, developments are still taking place which aim at providing more accurate, cheaper and
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more productive techniques in the future. This imposes challenges on the developers of the
computational methods which are increasingly required in order to boost the pace of data
analysis and discovery inference to cope with that pace of data generation.
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6
Databases, Standards
and Annotation

6.1 Introduction

One of the aspects that are tackled by bioinformatics is the storage, organisation, standardisation
and annotation of high-throughput datasets in a way that enhances data retrieval and consolidates
efficient knowledge transfer between themembers of the research community. Therefore, parts of
the funds given to researchers in order to establish the recent revolution in molecular biological
research have been spent on building massive centralised and standardised high-throughput data
repositories. Although managed by centralised consortiums or committees, the data content of
such repositories is generally provided by the entirety of the bioinformatics research community
from all over the world.
Data submission to centralised repositories has become the norm, and the community is

increasingly adhering to those centralised standards and protocols of annotation. Furthermore,
many research journals do not publish studies that include analysis of newly generated datasets
without in tandem publishing of the datasets, and the encouragement is towards publishing
those datasets through public centralised repositories in contrast to private websites.
The databases provided by the National Centre for Biotechnology Informatics (NCBI) and

the European Bioinformatics Institute (EBI) represent major resources in this field. Thus, we
start by introducing them. Then, we introduce some databases that are specialised in one species
or a number of related species. While introducing the databases and repositories, we describe
the standard labels and identifiers that are used to annotate the relevant biological variables.

6.2 NCBI Databases

The NCBI was founded in 1988 as a division of the National Library of Medicine (NLM),
which is a department at the U.S. National Institute of Health (NIH). The major objective
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of this centre is to establish systems which organise storing and analysing data and information
about molecular biology and genetics through databases, software tools and standards for data
deposition, exchange and biological nomenclature.
The NCBI hosts large number of databases which are specialised in different aspects related

to molecular biology and genetics. Excellently designed, the entries of any of those databases
are well linked to their related entries in the other databases, which altogether represent a com-
prehensively integrated data and knowledge resource for the research community.
The contents of the databases are available through both the NCBI HTTP website (http://

www.ncbi.nlm.nih.gov) and the FTP website (ftp://ftp.ncbi.nlm.nih.gov). Entrez is the NCBI’s
universal search engine with which users can search for specific keywords or identifiers in all of
the databases or in specific ones of them. Entrez search is carried out by using the search bar at
the top of the NCBI’s HTTP home page (Figure 6.1). The drop-down list provided by this
search bar is a list of all of the searchable NCBI databases, and selecting one of them from this
list indicates that it is the target database over which search will be performed. An option “All
Databases” is available which indicates that all of the databases will be searched for the given
keywords.
In this section we will describe some of the NCBI databases which are most relevant to the

scope of this book, and we will describe how to navigate through them and through the links
between their entries.While we briefly describe some other useful NCBI databases, we refer the
reader to the webpage at http://www.ncbi.nlm.nih.gov/guide/all/#databases for the complete
list of databases.

6.2.1 Literature Databases (PubMed, PMC, the Bookshelf and MeSH)

PubMed is a citation repository which accesses the MEDLINE database of life sciences liter-
ature and other databases (Acland et al., 2014). More than 20 million citations have been stored
in MEDLINE by 2014 with their abstracts and, in many cases, links to full-texts. PubMed
search is performed by selecting “PubMed” from the Entrez search drop-down list
(Figure 6.1). Information such as PubMed unique identifier (PMID), title, date, source, authors,
volume, pages, digital object identifiers (doi), links to related entries in other NCBI databases,
and others are provided for each applicable article accessed by PubMed. The PMID of a
PubMed entry is a number that uniquely identifies it, and is used to refer to it from the rest
of the NCBI databases. Moreover, PubMed citations can be downloaded as files that are
importable by some of the most popular citation managers such as EndNote and Reference
Manager (Acland et al., 2014).
PubMed Central (PMC) is a repository of full-texts of journal papers that is fed by collabora-

tions with journals in life sciences as well as direct submissions by contributors (Acland et al.,
2014). By 2014, about 1500 journals have fully participated in PMC enrichment, about 2500
journals have selectively participated, and about three million full-text articles have been stored
in the PMC database. Articles in PMC are identified with unique identifiers starting with the

Figure 6.1 NCBI’s entrez search bar
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prefix ‘PMCID’. If a PubMed citation article has a PMC full-text, its PMCID and a link to the
PMC full-text are provided by the PubMed record.
In addition to PubMed and the PMC, the NCBI provides the Bookshelf database, which

indexes books, reports, and documents in life sciences, brief information about them and their
full-texts (Hoeppner, 2013; Acland et al., 2014). Each book in this database is identified by a
unique identifier that starts with the letters ‘NBK’ followed by numerical digits. Furthermore,
the NCBI provides access to the U.S. NLM catalogue of journals which stores information
about journals in life sciences with all PubMed journal articles linked to their corresponding
NLM journal entries. By 2014, more than 220 000 books, reports and documents have been
indexed by the Bookshelf (Acland et al., 2014).
The medical subject headings (MeSH) database, hosted by the NLM and accessed through

NCBI Entrez search, organises controlled terms that represent headings of medical subjects in
tree-form (Acland et al., 2014). Any node in the tree represents a subheading within its parent
node, and a parent-heading for its descendant nodes. For example, the heading “gene expres-
sion” is a subheading of the term “genetic processes”, which is a subheading of the term
“genetic phenomena”, which is a subheading of the term “phenomena and processes cate-
gory”, which is the root of one of the main trees of heading terms in MeSH. This tree,
“phenomena and processes category”, is uniquely labelled with the tree letter ‘G’, and its
child term “genetic phenomena” is accordingly labelled as G05. The unique tree identifier
for the heading “gene expression” in MeSH is G05.355.310, which corresponds to the
sequence of headings starting from the root tree “G”, through the terms “genetic phenomena”
(G05) and “genetic processes” (G05.355), and ending at the desired node “gene expression”
(G05.355.310). By 2014, more than 240 000 terms have been recorded by theMeSH database
(Acland et al., 2014).

6.2.2 GenBank (Nucleotide Database)

The GenBank database (Benson et al., 2014), assumed by the NCBI in 1992, stores DNA
sequences submitted by individual laboratories as well as through regular data exchange with
databases like the European Nucleotide Archive (ENA) of the European Molecular Biology
Laboratory (EMBL) and the DNA Database of Japan (DDBJ). By 2014, the GenBank has
stored more than half a trillion nucleotide base pairs for more than 280 000 formally described
species. The source of most of this data is whole-genome shotgun sequencing, which is still
growing rapidly (Benson et al., 2014).

Searching the GenBank database can be performed by selecting “Nucleotide” as the Entrez
search target database. Moreover, the basic local alignment search tool (BLAST), provided
by the NCBI at the website http://blast.ncbi.nlm.nih.gov, facilitates very fast sequence sim-
ilarity searches over the GenBank database, as well as other sequence databases (Benson
et al., 2014).

6.2.3 Reference Sequences (RefSeq) Database

RefSeq is a collection of sequences for nucleotides (DNA and RNA) and proteins (Pruitt et al.,
2012). RefSeq unique accession identifiers are characterised with a prefix of two letters
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followed by an underscore then a number. Genomic (DNA) sequences have the prefixes AC,
NC, NG, NT, NW, NS and NZ; RNA sequences have the prefixes NM, NR, XM and XR; and
protein sequences have the prefixes AP, NP, YP, XP and ZP (Pruitt et al., 2002). The contents
of RefSeq can be accessed through the relevant entries in the NCBI GenBank (Nucleotide) and
Protein databases. Reporting an increase of more than 60-fold over a decade, more than 300
billion nucleotide bases and 11 billion protein amino acid residues have been collected and
stored by RefSeq by July 2013 (Acland et al., 2014).

6.2.4 Gene Database

The Entrez Gene database is a very comprehensive database of integrated information about
genes from species with completely sequenced genomes, as well as the genomes which have
active research communities, with more than 14 million gene records having been stored by
2014 (Maglott et al., 2011; Acland et al., 2014). Each gene is provided a unique, stable and
tracked integer identifier known as the Entrez Gene ID, which is used to refer to this gene from
the relevant entries in all of the other NCBI databases.

A gene’s profile in this database is comprehensive as it includes information regarding the
gene’s official name and symbol, type (e.g. protein coding), organism, other names (syno-
nyms), a summary paragraph, sequence and locus information, genomic regions, transcripts,
products, single-nucleotide polymorphisms (SNPs), list of relevant literature that cite this gene,
gene’s references to functions, phenotypes, variations, pathways, interactions with other genes
and their products, homology, gene ontology (GO), protein information, reference sequences,
related sequences, epigenomics and others. Most of those pieces of information are stored in
their corresponding specialised NCBI databases (e.g. sequences in GenBank (Benson et al.,
2014), protein information in Protein database, SNPs in the dbSNP database (Sherry et al.,
2001; Bhagwat, 2010), bibliography in PubMed etc.), where their relevant entries are linked
to that gene through its gene ID. In other words, a gene’s profile is its basic information fol-
lowed by an integrated compilation of those other databases’ relevant pieces of information. In
a symmetric manner, this gene’s profile links out to the corresponding entries in those source
databases.

6.2.5 Protein Database

The protein database includes summaries about protein sequences that are translated from
the nucleic acid sequences in the GenBank, RefSeq, and Third Party Annotation (TPA) data-
bases and others. More than 90 million protein sequences have been stored in this database
by 2014 (Acland et al., 2014). Each protein’s sequence has an accession number which is a
unique identifier. Those accessions are indexed by the RefSeq database which includes
nucleotide sequences (DNA and RNA) as well as protein sequences. Protein accession iden-
tifiers always include the letter ‘P’ as the second letter of their prefixes; for example, the
accession identifier for the sequence of the human protein encoded by the CPOX gene is
NP_000088.
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6.2.6 Gene Expression Omnibus

TheGene ExpressionOmnibus (GEO) is a repository of microarray and next-generation sequen-
cing (NGS) datasets (Barrett et al., 2013). The study records are organised as series of samples,
where each series is stored alongside its description and related information such as the organism
of the study, the microarray or NGS platform, the submitter’s contact, affiliation and country,
and the list of samples belonging to the series. GEO database stores structured records for micro-
array and NGS platforms as well as for the series’ samples. Series, platforms and samples are
identified with unique accession identifiers starting with the respective prefixes ‘GSE’, ‘GPL’
and ‘GSM’, followed by unique numbers.
Series, samples and platforms are cross-linked through their accession numbers. Each series

record links out to the record of the platform it was generated with as well as the records of its
samples, each sample’s record links out to its containing series and the base platform, and each
platform’s record lists hyperlinked accession identifiers for all of the series and samples generated
using it. Moreover, each of those types of GEO records links out to the Taxonomy database rec-
ord which represents the species to which this GEO record belongs, and the BioProject database’s
record which represents the project (study) under which this sample or series was generated.
Importantly, complete raw or preprocessed data files for those series, samples and platforms

are downloadable from the NCBI HTTP webpages presenting those records as well as through
the corresponding FTP web folder. They can be retrieved by the MATLAB function ‘getgeo-
data’ by providing the GEO accession number as the sole argument to the function.
When a series is read through the HTTP site, the FTP site or a research environment like

MATLAB, the retrieved data will be a matrix of rows representing microarray probes or NGS
sequence identifiers, and columns representing samples. Indeed if a sample is read, it will include
a single column of data in addition to somemeta-data. Despite that, there will be no detailedmeta-
data describing the microarray probes or the NGS sequences. This detailed information, such as
the genes represented by specific probes or sequences, is included in the platform’s record, which
can be retrieved in the same manner as retrieving series’ and samples’ records.

6.2.7 Taxonomy and HomoloGene Databases

The NCBI Taxonomy database is a repository of all of the organisms for which there are genetic
or protein sequences stored by the International Nucleotide Sequence Database Collaboration
(INSDC). This collaboration comprises the NCBI GenBank database, the ENA-EMBL, and
the DDBJ (Federhen, 2012). The taxonomies, of which there are more than one million, are
labelled with unique integer identifiers. Whenever the other NCBI databases report the organ-
ism of a gene, a protein, a data sample, a gene expression series, a gene expression platform or
the like, the reported organism is linked to its corresponding record in the Taxonomy database.

The NCBI also provides theHomoloGene database, which links homologous genes from the
same species (paralogues) or different species (orthologues) through HomoloGene groups. The
relation between the HomoloGene database and the Gene database is a one-to-many relation
where a single HomoloGene group, which is identified by a unique integer identifier, is asso-
ciated with a group of homologous genes through their Gene IDs. Entries in this database con-
sider genes from 21 completely sequenced eukaryotic species with more than 44 000 recorded
HomoloGene groups by 2014 (Acland et al., 2014).
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6.2.8 Sequence Read Archive

The Sequence Read Archive (SRA) database, founded in 2009 as part of the INSDC, stores
records from NGS studies (Kodama, Shumway and Leinonen, 2012). SRA experiments, stud-
ies, runs and analysis records are labelled with unique identifiers that have the prefixes ‘SRX’,
‘SRP’, ‘SRR’ and ‘SRZ’, respectively. By April 2014, more than 2400 Terabases have been
stored by the SRA database, where more than 1100 Terabases of them are available as open-
access sequence reads.

6.2.9 Genomic and Epigenomic Variations

Genomics short variations, including SNPs, and large variations, including insertions, dele-
tions, translocations and inversions, are archived in the NCBI databases dbSNP (Sherry
et al., 2001; Saccone et al., 2011) and dbVar, respectively (Church et al., 2010). The records
in both databases have exceeded 300 million and 3.5 million records, respectively, by 2014
(Acland et al., 2014).
Epigenetic variations, the variations that occur to the genome other than sequence variations,

are also archived by the NCBI in their specific database, Epigenomics (Fingerman et al., 2013).
Examples of epigenetic variations include post-translational histone protein modification,
DNA methylation, chromatin modification and non-coding RNA expression (Acland
et al., 2014).

6.2.10 Other NCBI Databases

The NCBI provides many databases other than the ones described in the previous sub-sections.
The BioProject is a repository of projects (studies) that involve high-throughput data genera-
tion and analysis, their attributes and their associated NCBI datasets (e.g. GEO series) (Barrett
et al., 2012). The BioSample database is a repository of biological samples that belong to data-
sets submitted to the NCBI such as sequencing data, gene expression data, epigenomics and
others (Barrett et al., 2012). The BioSystems database archives biological systems and their
related biological molecules. A record in this repository includes a list of genes, proteins
and small molecules, indeed through their NCBI cross-linked identifiers, and includes their
interactions within the considered system which might be a metabolic pathway, a signalling
pathway, a disease profile or any other type of biological system (Geer et al., 2010).

The PubChem databases, namely PubChem Substance, PubChem Compound and PubChem
BioAssay, are databases of records related to the chemical compounds in biology and their
properties (Wang et al., 2009, 2012). PubChem Substance is a repository of chemical sub-
stances and their attributes as submitted by the researchers in the research community. Pub-
Chem Compound, which links to the PubChem Substance database, is a repository of
validated chemical structures. Finally, the PubChem BioAssay database stores data and
descriptions of the bioactivity assays that screen the chemical substances and compounds in
the two former PubChem databases.
The NCBI database of Genotypes and Phenotypes (dbGaP) stores records that associate gen-

otypes (genomic characteristics) with phenotypes (observed characteristics). Genotypes
include genomic and RNA sequence data, genomic variations (SNP and large variations),
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epigenomic variations and gene copy number variations. The records of dbGaP include studies,
sets of analysis, datasets and documents (Tryka et al., 2014). The Entrez’s Molecular Model-
ling Database (MMDB) is a repository of proteins’ 3D structures (Chen et al., 2003), the
Genome database archives whole genomes, whether they are complete or in progress
(Acland et al., 2014), and the UniGene database stores sets of transcript sequences which
appear to come from the same transcriptional locus (Acland et al., 2014).
Indeed, each record in any of those databases has a unique identifier, which in most of

the cases starts with a prefix that indicates the hosting database (e.g. ‘BSID’ for BioSystems
records’ identifiers). Moreover, those databases are heavily cross-linked. For example,
references to genes or proteins in any of the databases’ records consider those genes’ or
proteins’ identifiers in the NCBI Gene or Protein databases, references to the literature
articles that relate to any record in any of the databases that consider the PMIDs of such articles,
and so on.

6.3 The EBI Databases

The EBI or EMBL-EBI, which is a part of the EMBL, provides a number of databases and tools
that are publically accessible by the bioinformatics research community (Brooksbank et al.,
2014). Together with the U.S. NCBI databases and the DDBJ, they constitute the major
species-generic publically accessible high-throughput data repositories for molecular biology.
The EBI databases adopt user-centred design (UCD), which concentrates on the easiness and
intuitiveness in use by target users (Brooksbank et al., 2014). The homepage of the EMBL-EBI
is at www.ebi.ac.uk.
The databases of the EBI are organised in a manner that corresponds to the layers of the

central dogma in molecular biology; those layers, in order, are genomics (DNA), transcrip-
tomics (RNA), proteomics, structures, chemical biology and systems. As supplementary to
that, there are databases for the literature, ontologies, and cross-domain tools and resources
(Brooksbank et al., 2014).
DNA and RNA databases include Ensembl, Ensembl Genomes, the European Genome-

phenome Archive (EGA), the Metagenomics portal, the ENA, the Genome-Wide Association
Studies (GWAS) archive and others (Brooksbank et al., 2014). Ensembl, which is a joint proj-
ect between the EMBL-EBI and the Wellcome Trust Sanger Institute, is a repository of geno-
mic data for model vertebrate species. Each gene in Ensembl is assigned a unique identifier
with the prefix of ‘ENSG’ (Flicek et al., 2014). By 2014, 73 vertebrate species have been
supported by the Ensembl database, in addition to three non-vertebrate model species – the
Caenorhabditis elegans worm, the Drosophila melanogaster fruit fly, and the Saccharomyces
cerevisiae baker’s yeast (Flicek et al., 2014). Corresponding gene records in the Ensembl and
NCBI Gene databases are mutually cross-linked, facilitating easy cross-navigation between
those databases. Ensembl Genomes database extends the Ensembl’s taxonomic coverage of ref-
erence genomes by including thousands of genomes from non-vertebrate animals, plants and
bacteria (Kersey et al., 2012). The EGA links genetic characteristics (genotypes) with their con-
sequent observed traits (phenotypes) (Brooksbank et al., 2014). The Metagenomics portal
archives metagenomic studies, which are studies of collective genomic information from an
environment containing various species (Hunter et al., 2014). The ENA stores nucleotide
sequence data ranging from raw reads to assemblies and functional annotation (Pakseresht
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et al., 2014). Finally, the GWAS Catalogue, which is a collaborative database between EMBL-
EBI and the US National Human Genome Research Institute (NHGRI), represents a resource
for SNP information (Welter et al., 2014).
Genetic and protein-expression EMBL-EBI databases include the ArrayExpress Archive,

Expression Atlas, Proteomics Identifications (PRIDE) database and MetaboLights (Brooksbank
et al., 2014). ArrayExpress Archive complements and overlaps with the NCBI GEO database
and the DDBJ Omics Archive for gene expression data archiving from both microarray- and
sequencing-based experiments (Rustici et al., 2013). The Expression Atlas database adds
another layer of gene expression analysis to the datasets stored in the ArrayExpress Archive
by facilitating queries about genetic differential expression across biological conditions such
as tissues and cell types. The underlying data sources for this Atlas include the datasets in
the ArrayExpress Archive, the NCBI GEO datasets and the ENA (Adamusiak et al., 2012).
The PRIDE database is a repository of mass spectrometry - (MS)-based proteomics data, such
as protein-expression data (Vizcaíno et al., 2013). Lastly, MetaboLights is a public repository
for metabolomics data, including raw experimental data and associated meta-data (Haug
et al., 2013).
EMBL-EBI’s Protein information databases include UniProt, InterPro and others

(Brooksbank et al., 2014). UniProt, which is managed by a collaboration between the
EMBL-EBI, the Swiss Institute of Bioinformatics (SIB), the University of Georgetown and
the University of Delaware, is a unified database of information regarding protein sequences
and functions (The UniProt Consortium, 2014). The UniProt database is well integrated with
the Ensembl and Ensembl Genomes database, and is complemented by the InterPro database.
The latter is an archive of protein families, domains, functional sites and motifs (Hunter
et al., 2009).

The Electron Microscopy Data Bank (EMDB) and the Protein Data Bank in Europe (PDBe)
are amongst the EMBL-EBI’s databases of molecular and cellular structures (Brooksbank
et al., 2014; Gutmanas et al., 2014). ChEMBL and ChEBI are two databases of chemical biol-
ogy which archive drugs, biochemical activities, reference chemical structures, nomenclature
and ontological classification, and natural compound classification (Willighagen et al., 2013;
Brooksbank et al., 2014).
Systems databases by the EMBL-EBI include BioModels, IntAct, the Reactome and the

Enzyme Portal (Brooksbank et al., 2014). BioModels database archives computational models
of biological processes (Chelliah, Laibe and Novère, 2013), IntAct is a repository of molecular
interactions (Kerrien et al., 2012; Orchard et al., 2014), the Reactome is a comprehensive data-
base of curated human pathways including molecular interactions as well as structural and
expression data (Croft et al., 2014) and the Enzyme Portal is an integrated database of enzymes
and their functions, resolved structures, reactions, pathways, substrates, products, and related
diseases and literature (Alcántara et al., 2013).
As for literature databases, the EMBL-EBI manages the Europe PubMed Central (Europe

PMC) in collaboration with the University of Manchester and the British Library. The Europe
PMC is part of the international PMC run by the NCBI (McEntyre et al., 2011; Brooksbank
et al., 2014).

The EMBL-EBI researchers play key roles in feeding the GO Consortium initiative, which
involves many research groups and institutes aiming at unifying the representation of the attri-
butes of genes and their products. The GO repository includes associations of genes to their
or their products’ attributes such as their biological processes, molecular functions and cellular
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components. The EMBL-EBI has provided added-value GO databases such as the Experimen-
tal Factor Ontology (EFO) database. This database aims at annotating gene expression datasets
and GWAS, as well as integrating genomic and disease data (Malone et al., 2010; Brooksbank
et al., 2014).
The EBI BioSamples database is a cross-domain resource of biological samples. It resembles

the BioSample databases of the US NCBI and the DDBJ in terms of types of stored information
and function. The three bodies agreed on a common accessioning scheme, and consequently
data exchange takes place between them (Barrett et al., 2012; Faulconbridge et al., 2014).

6.4 Species-specific Databases

The majority of the databases provided by the US NCBI and the EBI are general with regards to
the species they consider. More specialised databases exist for more focused investigation of a
specific model species or a group of related species. We review some of the commonly used
species-specific data sources in this section.

6.4.1 Animals

The HumanMetabolome Database (HMDB), whose homepage is at www.hmdb.ca, was devel-
oped by the Wishart Research Group at the University of Alberta in Canada as part of the
Human Metabolome Project. This database archives chemical, clinical and biochemical infor-
mation about the metabolites (small molecules) found in human bodies (Wishart et al., 2013).
Version 3.5 contains more than 40 000 metabolite entries and more than 5600 linked protein
sequences. The included metabolites are from a wide range of abundance level from rare to very
abundant, and with different properties such as being water-soluble or lipid-soluble.

A model mammal organism of research interest is the house mouse Mus musculus.
The Mouse Genome Informatics (MGI) databases, with a homepage address at www.informat-
ics.jax.org, constitute a comprehensive resource for mouse genomic data and analysis. MGI is
run by the non-profit molecular biology research institute, the Jackson Laboratory, and funded
mainly by the US NHGRI, which is part of the US NIH. Different databases are included within
the MGI, such as the Mouse Genome Database (MGD) (Blake et al., 2014), the mouse Gene
Expression Database (GXD) (Smith et al., 2014), the Mouse Tumour Biology database (MTB)
(Begley et al., 2012), theMouse PhenomeDatabase (MPD) (Grubb, Bult and Bogue, 2014) and
others.

Another useful resource for mouse molecular biology data is the Edinburgh Mouse Atlas
Project (EMAP), which has its homepage at www.emouseatlas.org. EMAP includes the E-
Mouse Anatomy Atlas (EMA) as well as the Mouse Gene Expression Spatial Database
(EMAGE) (Hayamizu et al., 2013; Richardson et al., 2014).
Another model mammalian organism, the Norway rat Rattus norvegicus, is the focus of

the Rat Genome Database (RGD) hosted at rgd.mcw.edu. This database is run by the group
of Dr Howard J. Jacob at the Medical College of Wisconsin, and funded by the National Heart
Lung and Blood Institute (NHLBI) of the US NIH. This database provides data regarding rat’s
genome, genes, phenotypes, strains, diseases, physiology and nutrition (Cruz et al., 2005;
Laulederkind et al., 2013).
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Beyond mammals, the databases Xenbase, hosted at www.xenbase.org (James-Zorn et al.,
2013), Zebrafish Information Network (ZFIN), hosted at www.zfin.org (Howe et al., 2013),
WormBase, hosted at www.wormbase.org (Harris et al., 2014), and FlyBase, hosted at
www.flybase.org (St Pierre et al., 2014), are data resources that focus on selected model organ-
isms belonging to amphibians, fish, worms and insects, respectively. Those databases provide
different ranges of integrated data about genomics, gene expression, sequences, anatomy and
others.

6.4.2 Plants

The GreenPhyl database (Rouard et al., 2011) and the Munich Information Centre for Protein
Sequences (MIPS) PlantDB (Nussbaumer et al., 2013) databases are focused on integrative and
comparative analysis of plant genomes and building their phylogenetic trees. The homepage of
the former is at www.greenphyl.org while the homepage of the latter is at mips.helmholtz-
muenchen.de/plant/genomes.jsp.
In contrast, some databases are focused on narrower subsets of botanical species. For

instance, The Arabidopsis Information Resource (TAIR) (Lamesch et al., 2012), hosted
at www.arabidopsis.org, and the Maize Genetics and Genomics Database (MaizeGDB)
(Schaeffer et al., 2011), hosted at www.maizegdb.org, store integrative data regarding the
genes, proteins, metabolic pathways and others for the model plant Arabidopsis thaliana (thale
cress) and the model crop Zea mays (maize), respectively.

6.4.3 Fungi

The Stanford University’s Saccharomyces Genome Database (SGD) is the most popular data-
base that is specialised in baker’s yeast (Saccharomyces cerevisiae) and relative species molec-
ular biology data. The SGD database is manually curated from the studies in the literature in a
well organised and easily accessible manner (Cherry et al., 2012). Within the SGD website
www.yeastgenome.org, every yeast gene has a single webpage that has tabs focusing on the
locus history, relevant literature articles, GO, phenotypes, interactions, expression profiles,
genetic regulation, gene’s product (protein) and the corresponding Wikipedia page.
A summary tab is also available which summarises the key aspects from all of the other tabs,
and this is the default tab that is shown when the gene’s page is requested. SGD assigns each
gene a unique identifier (SGDID) which starts with the prefix ‘S’, and provides links to the
relevant gene or gene product records in many other databases such as the NCBI Entrez Gene,
the EMBL-EBI UniProt and the MIPS CYGD databases.
The literature in the SGD database is thoroughly manually curated where each article is given

a unique SGD identifier and the genes for which an article is considered as a primary or sec-
ondary source are identified. Indeed, links to those articles’ records in their publishing journals
as well as the PubMed and the PMC databases are provided. SGD provides various tools for
sequence and GO analysis such as BLAST, GO Slim Mapper and GO Term Finder. It has
recently included gene regulation information as well (Costanzo et al., 2014).
By adopting the same design and scheme as the SGD database, a group at Stanford University

provides the Candida Genome Database (CGD) at the web address www.candidagenome.org
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(Binkley et al., 2014). Candida is a genus of budding yeasts that belongs to the same family of
the genus Saccharomyces.
The US Department of Energy Joint Genome Institute has developed a fungal genomics

portal, MycoCosm, which includes integrated fungal genomic data, analysis and tools
(Grigoriev et al., 2014). MycoCosm, with a homepage at genome.jgi.doe.gov/programs/fungi,
also promotes for the 1000 fungal genomes project, hosted at 1000.fungalgenomes.org, aiming
at filling more gaps in the huge phylogenetic tree of fungi.
The MIPS Comprehensive Yeast Genome Database (CYGD), which is hosted at mips.

helmholtz-muenchen.de/genre/proj/yeast, archives up-to-date data about Saccharomyces cerevi-
siae (baker’s yeast) molecular structures and functional networks (Güldener et al., 2005). Addi-
tionally, the Yeast Metabolome Database (YMDB), which is hosted at www.ymdb.ca, is a
manually curated database of baker’s yeast small molecules (metabolites), and their properties
(Jewison et al., 2012), and YeastNet, which is hosted at www.inetbio.org/yeastnet, is a resource
for integrated functional gene networks for Saccharomyces cerevisiae (Kim et al., 2014).

6.4.4 Archaea and Bacteria

The Microbial Genome Database (MBGD), funded by the Japan Society for the Promotion of
Science (JSPS), is a resource for comparative genome analysis of the growing numbers of com-
pletely sequenced microbial genomes (Uchiyama et al., 2013). This database, with a homepage
at mbgd.genome.ad.jp, mainly includes species from archaea and bacteria, in addition to a few
eukaryotic species.
The Pathosystems Resource Integration Centre (PATRIC), hosted at patricbrc.org, is a bac-

terial bioinformatics resource centre that provides the research community with integrated
genomic, transcriptomic, proteomic, structural, sequencing and other types of bacterial data,
metadata and tools. More than 10 000 genomes have been annotated within PATRIC in a con-
sistent way by employing the Rapid Annotations using Subsystems Technology (RAST)
(Overbeek et al., 2014; Wattam et al., 2014).
The Integrated Microbial Genome (IMG), whose homepage is at img.jgi.doe.gov, is a

resource for integrated annotation, analysis and distribution of microbial genomic and metage-
nomic datasets (Markowitz et al., 2014a, b). IMG and IMG Metagenomics (IMG/M) provide
analysis tools as well as support for teaching relevant courses. Full access to IMG and IMG/M
requires registration and logging in to their system.

The Leibniz Institute DSMZ of the German Collection of Microorganisms and Cell Cultures
runs the Bacterial Diversity Metadatabase (BacDive), hosted at bacdive.dsmz.de. This database
contains taxonomic, morphologic, physiologic, environmental and molecular-biological infor-
mation about more than 23 000 bacterial and archaeal strains (as per September 2013); it also
facilitates data download as well as easy but detailed search throughout its contents (Söhngen
et al., 2014).

The Collection of Microarrays for Bacterial Organisms (COLOMBOS) database, which is
hosted at www.colombos.net, is a resource for exploring and analysing cross-platform micro-
array datasets for organism-specific bacteria (Meysman et al., 2014). The raw microarray and
NGS datasets considered by COLOMBOS are mainly from the NCBI GEO and the EMBL-EBI
ArrayExpress databases. Information from cross-platform datasets is combined and analysed in
COLOMBOS to provide the user with high-level information and interactive search for specific
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genes, pathways, transcription-regulation mechanisms, high-level condition ontology and
others. An application programming interface (API) is also provided as a web service to allow
researchers to access COLOMBOS through user-specific software tools. Rcolombos is an
R language package that utilises that API, and it is downloadable from the webpage cran.
r-project.org/web/packages/Rcolombos.
With a narrower but deeper scope, the PortEco database represents a comprehensive

resource for knowledge and data about the model bacterial organism Escherichia coli, mainly
the laboratorial strain K-12 (Hu et al., 2014). E coli is amongst the most understood organisms
due to its relatively small size and ease of manipulate, and the knowledge driven from its inves-
tigation feeds our understanding regarding various aspects of molecular and cellular biology.
PortEco, with a homepage at www.porteco.org, is run by a US national consortium including
laboratorial biologists and computational biologists, and is funded by the US NIH.

6.4.5 Viruses

The ViralZone database, developed and funded by the SIB and hosted at viralzone.expasy.org,
is a knowledge and data resource for viral bioinformatics. The database includes information
about DNA viruses, RNA viruses and retro-viruses regarding their structures, replication
cycles, interactions with hosts and other molecular-biological types of data (Masson
et al., 2013).
The US NCBI provides the virus-specific database Virus Variation Resource at the webpage

www.ncbi.nlm.nih.gov/genomes/VirusVariation. This database archives viral gene and protein
sequence annotations and relevant meta-data, as well as means to access such data resource
through an HTTP and an FTP websites (Brister et al., 2014).

6.5 Discussion and Summary

Large numbers of laboratories and institutes around the world participate in the generation and
analysis of high-throughput biological datasets. Centralised repositories and knowledge bases
which comprehensively collect such amounts of data and provide the research community with
practical means of data access and retrieval are needed for efficient progression in the global
understanding of molecular biology and related sciences. Indeed, centralised repositories
necessitate centralised protocols and standards for data annotation and labelling. A number
of such databases and repositories are listed in Table 6.1.
The USNCBI, the EBI, the SIB, and the DDBJ are the most recognisable bodies that provide

centralised resorts for data depository and retrieval. The NCBI and the EBI databases, thor-
oughly discussed in this chapter, cover all aspects of molecular biology including DNA,
RNA, and protein sequencing, genomics, genetics, proteomics, gene and protein expression,
taxonomy classification, homology, genetic and epigenetic variations, chemical substances
and bioactivity assays, relevant literature citations and full-texts and others. They label all
of the records in those databases with unique identifiers which facilitate easy referral to them
from the other databases within the same repositories or from other repositories. With this,
those databases are heavily integrated through cross-linking; for example, a record summaris-
ing a gene’s information has links to the identifiers of the gene’s product (protein), homology
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group, DNA sequence, known SNPs or other genetic or epigenetic variations, relevant literature
articles, GO terms and external links to this gene’s records in other independent databases.
In addition to those generic data resources, there are many databases that focus on a specific

species or group of related species. Many of those databases selectively concentrate on model
organisms such as human, mouse and rat from mammals, thale cress and maize from plants,
baker’s yeast from fungi and E. coli from bacteria. In contrast, many other species-specific
databases stretch over a wider range of species for comparison objectives, mainly regarding
microorganisms such as some fungi, archaea, bacteria and viruses.
The ways in which those data repositories can be exploited are diverse. In addition to the

more intuitive ways which each dataset suggests, cross-aspect analysis can be carried out
by clever manipulation of the data resources. For example, cross-species analysis can be per-
formed by considering the homology groups provided by the NCBI HomoloGene database as
criteria which map different species’ genes to each other. Studies considering genomic-
proteomic comprehensive analysis would observe the cross-links between the records in a data-
base of genes and the records of their products in a database of proteins. This can be extended to
any sets of analysis which collectively consider different aspects of molecular biology. More-
over, bioinformaticians can exploit the FTP websites and the APIs provided by those data
resources in order to access massive amounts of data in an automatic and structured manner,
which is an excellent utility for meta-analysis and the next-generation intensively collective and
comprehensive computational methods in bioinformatics.

Table 6.1 High-throughput data resources

Database Provider Description

PubMed NCBI Literature citations
PMC NCBI Full-text journal papers
Bookshelf NCBI Books, reports, and documents
MeSH NCBI/US NLM Medical subject headings
GenBank NCBI DNA sequences
RefSeq NCBI DNA, RNA, and protein sequences (accessed by

GenBank (Nucleotide) and Protein databases)
Entrez Gene NCBI Genes
Protein NCBI Proteins
GEO Series NCBI Microarray and NGS expression datasets
GEO Platforms NCBI Microarray and NGS platforms
GEO Samples NCBI Microarray and NGS expression samples
Taxonomy NCBI Organisms
HomoloGene NCBI Genes’ homologues
SRA NCBI NGS experiments and results
dbSNP NCBI Single nucleotide polymorphisms and short

sequence variations
dbVar NCBI Large sequence variations (insertions, deletions,

translocations and inversions)
BioProject NCBI Biological projects (studies)
BioSample NCBI Biological samples (e.g. expression data and

epigenomics)

(continued overleaf )
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Table 6.1 (continued)

Database Provider Description

BioSystems NCBI Biological systems (e.g. metabolic and signalling
pathways)

PubChem Substance NCBI Chemical substances submitted by researchers
PubChem Compound NCBI Validated chemical structures – links to PubChem

Substance
PubChem BioAssay NCBI Bioactivity assays which screen chemical

substances
dbGaP NCBI Associations of genotypes and phenotypes
MMDB NCBI Protein 3D structures
Genome NCBI Whole genomes
UniGene NCBI Transcript sequences that appear to come from the

same transcriptional locus
Ensembl EMBL-EBI & Wellcome

Trust Sanger Institute
Genomic data for model vertebrate species and few
model non-vertebrate species (e.g. C. elegans,
D. melanogaster and S. cerevisiae)

Ensembl Genomes EMBL-EBI Extends Ensembl database by including thousands
of genomes

EGA EMBL-EBI Associations of genotypes and phenotypes
ENA EMBL-EBI Nucleotide (DNA and RNA) sequences
GWAS EMBL-EBI & US

NHGRI
Single-nucleotide polymorphisms

ArrayExpress Archive EMBL-EBI Microarray and NGS expression data
Expression Atlas EMBL-EBI Additional layer of analysis to the data in the

ArrayExpress Archive
PRIDE EMBL-EBI Proteomic data (e.g. protein-expression data)
MetaboLights EMBL-EBI Metabolomic data
Omics Archive DDBJ Microarray and NGS expression data
UniProt EMBL-EBI and others Protein sequences and information
InterPro EMBL-EBI Protein families, domains, functional sites and motifs
EMDB EMBL-EBI Electron microscopy data
PDBe EMBL-EBI Protein molecular structures and cellular structures
ChEMBL EMBL-EBI Chemical biology data
ChEBL EMBL-EBI Chemical biology data
BioModels EMBL-EBI Computational models of biological processes
IntAct EMBL-EBI Molecular interactions
Reactome EMBL-EBI Curated human pathways
Enzyme portal EMBL-EBI Enzymes functions, structures, reactions, pathways,

substrates, and so on
Europe PMC EMBL-EBI and others Full-text literature; part of the NCBI international

PMC
GO GO Consortium Gene ontologies (biological processes, molecular

functions, and cellular components)
EFO EMBL-EBI An added-value GO databases annotating gene

expression, genome-wide associations, and
integrating genomic and disease data

EBI BioSamples EMBL-EBI Biological samples (gene expression, epigenomics
and others)
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Table 6.1 (continued)

Database Provider Description

HMDB University of Alberta Chemical, clinical, and biochemical information
about human metabolites

MGI/MGD Jackson Laboratory Mouse genomes
MGI/GXD Jackson Laboratory Mouse gene expression data
MGI/MTB Jackson Laboratory Mouse tumour data
MGI/MPD Jackson Laboratory Mouse phenome data
EMAP/EMA UK MRC, Jackson Lab,

and Heriot-Watt
University

Mouse anatomy

EMAP/EMAGE UK MRC, Jackson Lab,
and Heriot-Watt
University

Mouse gene expression spatial data

RGD Medical College of
Wisconsin

Rat genome, genes, phenotypes, strains, diseases,
physiology and nutrition

Xenbase International community Frog genus Xenopus genomic, expression and
functional data

ZFIN University of Oregon Zebrafish genetic, genomic and developmental data
WormBase International community Worm C. elegans and related roundworms genetic

and genomic data
FlyBase International community Fruit fly genus Drosophila genetic and genomic

data
GreenPhyl Biodiversity International

and CIRAD
Plant genomes integrative and comparative analysis

PlantDB Munich MIPS Plant genomes integrative and comparative analysis
TAIR Phoenix Bioinformatics

Corporation
Thale cress (A. thaliana) genetic, proteomic,
metabolic and other data

MaizeDB International community Maize crop (Z. mays) genetic, proteomic, metabolic
and other data

SGD Stanford University Baker’s budding yeast (Saccharomyces genus)
genetic, genomic, proteomic, structural, literature
and other data

CGD Stanford University Budding yeast (Candida genus) genetic, genomic,
proteomic, structural, literature and other data

MycoCosm US Department of Energy
Joint Genome Institute

Fungal genome portal for integrated fungal genomic
data and promotes for the 1000 genomes project

CYGD Munich MIPS Baker’s yeast (S. cerevisiae) molecular structures
and functional networks

YMDB University of Alberta,
Canada

Baker’s yeast (S. cerevisiae) metabolome database

YeastNet Yonsei University, Korea Baker’s yeast (S. cerevisiae) integrated functional
gene networks

MBGD JSPS Comparative genome analysis of completely
sequenced microbial genomes (bacteria, archaea
and a few eukaryotes)

PATRIC Virginia Bioinformatics
Institute

Bacterial integrated genomic, transcriptomic,
proteomic, structural and sequencing data

(continued overleaf )
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7
Normalisation

7.1 Introduction

Reliable quantification of gene expression is that which faithfully reflects the true mRNA
levels in a given sample. However, much variability exists in the available technologies
(e.g. microarrays) which perturb the measurements so that they are no longer reliable in their
raw form. Such variability can be caused by the preparation of the biological sample, fluores-
cent labelling, specific hybridisation, non-specific hybridisation, scanning, image processing
and others (Calza and Pawitan, 2010). Moreover, in most of the microarray datasets, many
mRNA samples are taken and measured by multiple microarray chips/slides; these samples
can be from different types of tissues (e.g. cancer and normal tissues), at different chronological
stages or time points within a biological process, or from different samples contained in dif-
ferent biological conditions. Thus, not only the comparability of intensities of different genes
within one slide is questioned, but also the comparability of intensities of a single gene amongst
different slides (samples) is questioned.

Normalisation aims at eliminating these technical variations within a single slide or
between multiple slides. This is so that remaining variations of intensities reliably represent
actual biological variations, which are what such experiments desire to measure. The
necessity of the normalisation step was reported as one of the six important issues listed
by the Minimum Information about a Microarray Experiment (MIAME) protocol (Brazma
et al., 2001).
In this chapter, we discuss the issues which exist in microarrays and are tackled by

normalisation, and then we present some of the most commonly used normalisation methods.

Integrative Cluster Analysis in Bioinformatics, First Edition. Basel Abu-Jamous, Rui Fa and Asoke K. Nandi.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



7.2 Issues Tackled by Normalisation

Before delving into some examples of normalisation methods, it is appropriate to introduce
some of the core issues which have been tackled by normalisation. Different normalisation
methods tend to lean on different hard presumptions about the nature of gene expression or
about the way in which different sources of variation bias the measured intensity from the
original mRNA concentration (Wu, 2009). This section reviews some of these issues, each
in a separate sub-section.

7.2.1 Within-slide and Between-slides Normalisation

As mentioned above, variations cause the comparability of expression intensities between
genes within one slide or between different slides to be questionable. Therefore, different
methods were proposed to perform within-slide and/or between-slides normalisation, where
in many cases both are necessary (Yang et al., 2002; Sievertzon, Nilsson and Lundeberg,
2006; Verducci et al., 2006).

In two-channel microarrays, within-slide normalisation also tackles the uneven distribution
of the Cy3 and Cy5 dyes’ intensities within the same slide (Yang et al., 2002; Sievertzon,
Nilsson and Lundeberg, 2006). Moreover, in spotted cDNA arrays, the microarray slide usually
has a grid of probes’ regions such that each region is printed by a different print-tip (pen).
Within-slide normalisation methods can be applied locally on each of these regions; in this
case, it is called within-print-tip normalisation. Then, between-slides normalisation methods
can be applied between different print-tips’ regions and is called between-print-tips normalisa-
tion (Yang et al., 2002).

7.2.2 Normalisation Based on Non-differentially Expressed Genes

Many normalisation methods are based on the presumption that the distribution of
gene expression values in different slides is the same and that the distribution of up-regulated
genes is even with that of down-regulated ones; of course this includes the assumption that the
genome as a whole is mostly non-differentially expressed between different slides. Within a
single slide, it is presumed that the distribution of up-regulated and down-regulated genes,
when spanned over all of the orders of intensities, is even.
Although most methods use the entire genome as a reference for normalisation based on the

assumption that the entire genome collectively is fairly invariant across slides, this assumption
has been questioned by many researchers (Calza and Pawitan, 2010). The suggestion by many
has been to use a set of non-differentially expressed genes, for example housekeeping genes
which are involved in essential cell metabolic processes, as controls to be used for distribution
estimation; this led many microarray manufacturers to include such controls within their arrays
(Tseng et al., 2001; Reilly, Wang and Rutherford, 2003; Abruzzo et al., 2005; Sievertzon,
Nilsson and Lundeberg, 2006; Wu, 2009; Calza and Pawitan, 2010).
However, even the assumption itself that these specific genes are always invariant across

different slides may not be as accurate as required (Sievertzon, Nilsson and Lundeberg,
2006; Wu, 2009; Calza and Pawitan, 2010). If that was the case, the uncounted-for variabilities
in the small subset of genes expected to be non-differentially expressed would result in worse
affects than if such variabilities occurred at the full set level. Therefore, using the full set of
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genes would be preferred in many cases (Sievertzon, Nilsson and Lundeberg, 2006; Calza and
Pawitan, 2010).
This alternation in the literature between using the entire genome and a subset of non-

differentially expressed genes seems to be one of the most varying subjects in microarray data
normalisation; the general trend is towards using the entire genome though.
Examples of the methods which select a subset of invariant genes include the least variant

set (LVS) method (Calza, Valentini and Pawitan, 2008; Calza and Pawitan, 2010) and a
data-driven model-based procedure (Li and Wong, 2001b).

7.2.3 Background Correction

It is well known that optical noise and non-specific binding (NSB) are of the reasons for the
technical variations in microarrays (Wu et al., 2004). NSB is when sequences other than the
intended target bind to the probe and add to its measured intensity value. This additional
undesired value is considered as an additive background noise which needs to be eliminated
(Yang, Buckley and Speed, 2001; Konishi, 2004; Wu, 2009). Different normalisation methods
address this issue by following different approaches.
As a trial to overcome this issue at the level of microarray chip design, and as mentioned

in Chapter 5, Affymetrix microarrays include for each target sequence a perfect match
(PM) probe, which perfectly matches the target’s sequence, paired with a mismatch (MM)
probe, which differs from the PM by only the middle nucleotide. According to the manufac-
turer, the MM is supposed to measure the background bias due to optical noise and NSB for
the corresponding PM. Accordingly, the intensity difference (PM −MM) was considered as
the corrected intensity (Wu, 2009).
However, it was shown by many researchers that MMs do not represent merely the

background (Naef and Magnasco, 2003; Ahmed, 2006); for example, in many cases the
MM’s intensity was consistently higher than the PM’s (Naef et al., 2002; Roberts, 2008;
Wu, 2009). Other studies also showed that background adjustment merely by subtracting
the MM values results in inflated variance of the gene expression estimates (Irizarry et al.,
2003a; Wu, 2009). So, many studies used PM only (Wu, 2009). In this case, the gain in pre-
cision overweights the loss in accuracy when using (PM −MM) (Cope et al., 2004; Wu, 2009).
For example, the popular method MAS5 uses the intensity difference (PM −MM) while the
popular method RMA only uses the PM value.
Wu and Irizarry summarised the background noise and the other sources of variation which

affect the measured intensity in a common additive-background-multiplicative-measurement
(ABME) error model (Wu and Irizarry, 2007b; Wu, 2009). The model is represented as shown
in Equation (7.1),

Yij =Bij + Sij = Bj + δij + eaj + γi + μij + εij 7 1

where Yij is the intensity of the j
th probe on the array i and Bij = Bj + δij is the background noise

for the jth probe on the array i; Bj is the mean background on the jth probe and δij is an additive
error term, which is sometimes absorbed by the background term. The term Sij represents
the specific binding intensity which is composed of many terms in a multiplicative manner,
aj is the efficiency of the probe, γi is the array effect for all probes, μij is the log concentration
of the target, and εij is the multiplicative measurement error.

89Normalisation



By taking the array effect γi outside the exponential and naming it fi, the model becomes as
shown in Equation (7.2):

Yij = Bj + δij + fie
aj + μij + εij 7 2

If a probe-set gwas used to represent one gene, the model becomes as shown in Equation (7.3),

Yij = Bgj + δgij + fie
agj + μgi + εgij 7 3

where μgi is the log concentration of the target gene. Although these models were mentioned
mainly in the context of Affymetrix matrices, it appears that they apply to many others
including Illumina (Lin et al., 2008; Wu, 2009).
Many older studies had suggested that the background noise is multiplicative (Kerr, Martin

and Churchill, 2000; Dudoit et al., 2002), but Wu and colleagues did empirically demonstrate
that it is additive with non-zero mean, and they supported the aforementioned ABME model
(Wu et al., 2004).

7.2.4 Logarithmic Transformation

Either for one-channel microarrays intensities or for two-channel microarrays intensity ratios,
logarithmic transformation is a very common step included within most normalisation methods
(Eisen, 1999; Kerr, Martin and Churchill, 2000; Roberts, 2008). Wu stated that this transfor-
mation is usually found to remove or reduce the dependency between the mean and the variance
(Wu, 2009); this is because the relation between the variance and the mean was found to be
heteroscedastic (Kepler, Crosby and Morgan, 2002; Motakis et al., 2006).
Many researchers have mentioned that the variations in microarrays follow a multiplicative

model, and that the intensities follow a lognormal distribution; thus, logarithmic transformation
converts the variations to be additive and the distribution to be fairly normal (Kerr, Martin and
Churchill, 2000; Tseng et al., 2001; Konishi, 2002, 2004; Olshen and Jain, 2002; Kreil and
Russell, 2005).
However, as this transformation is usually performed after background elimination, it might

be less effective at low intensities. This is because negative values might appear by background
subtraction. So, it has been proposed by many studies to add an offset before taking the
logarithm (Irizarry, Wu and Jaffee, 2006; Roberts, 2008). Moreover, some studies showed that
the intensities distribution sometimes does not perfectly fit a lognormal distribution model
(Kerr, Martin and Churchill, 2000; Hoyle et al., 2002; Konishi, 2004).
Sapir and Churchill compared logarithmic transformation with some other options such as

square roots and reciprocals; logarithmic transformation was superior in such comparisons
(Sapir and Churchill, 2000). Konishi investigated the transcriptome based on the laws of
thermodynamics and proposed using a model which justifies why the transcriptome tends to
follow a lognormal distribution (Konishi, 2005).
In the two-channel microarrays case, the log-ratio (log2(intensity1/intensity2)) makes fold

changes in both directions symmetrical. For example, log2
5
1

= 2 32 and log2
1
5

= −2 32,

which is more intuitive to work with than the non-log-ratios (Quackenbush, 2002; Sievertzon,
Nilsson and Lundeberg, 2006; Lee and Saeed, 2007).
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7.2.5 Intensity-dependent Bias – (MA) Plots

It was observed in many studies that the bias in the measured intensities due to technical
variation is intensity-dependent; that is, the bias is different at different orders of intensity
values. This applies to both one-channel and two-channel microarrays.
To visualise this fact in two-channel microarrays, MA plots were proposed (Dudoit et al.,

2002) and used in many instances of research studies (Calza and Pawitan, 2010). The MA plot
is a plot of the log-ratioM = log2 Cy5 Cy3 versus the abundance A= log2 Cy5 ×Cy3 (Dudoit
et al., 2002). Based on the assumption that the log-ratios represented by the M-axis are evenly
distributed around the zero axis, the expected MA plot for an unbiased dataset would have that
property met at all orders of intensities represented by the A-axis.
An example of an MA plot for un-normalised data is shown in Figure 7.1. It is very clear that

the distribution of the data points is not symmetrical around the M = 0 axis.
Such plots show that there is a bias between the Cy5-dye and the Cy3-dye, that is the presence

of intensity-dependent effects (Irizarry et al., 2003a; Sievertzon, Nilsson and Lundeberg, 2006).
Another version of MA plots is called the ratio-intensity (RI) plot, which plots the log-ratio
R= log2 Cy5 Cy3 versus the intensity I = log10 Cy5 ×Cy3 (Quackenbush, 2002). Many
normalisation methods, such as the very popular lowess method, tackle the problem of normal-
isation based on this MA plot (Quackenbush, 2002; Yang et al., 2002; Xie et al., 2004).

7.2.6 Replicates and Summarisation

To increase the reliability of the measurements, replicates of the samples are considered.
Replicates can be biological or technical. Biological replicates are actually multiple biological
samples taken for the same condition; they provide information about the biological variation
as well as the stochastic variation in the pre-processing of the samples. Technical replicates
consider measuring the expression of the same biological sample by multiple arrays (chips).

5 10 15
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Figure 7.1 Sample MA plot for an un-normalised yeast genome data sample with the NCBI accession
number GSM81075
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Such replicates can provide information about the stochastic technical variations in the arrays’
probes or the scanner (Churchill, 2002; Quackenbush, 2002).
In Affymetrix GeneChips there are 11–20 probes per gene with an average of four probes per

exon. In Illumina there is one probe per gene but there are many replicates for it (about 30) (Wu,
2009). Summarisation is to obtain one measurement which represents the collective summary
of the various readings for the same gene (Wu, 2009).
In the case of two-channel arrays, this can be done by taking the geometric mean

of the intensities, which is equivalent to taking the arithmetic mean of the log-ratios
(Quackenbush, 2002). Some normalisation methods, such as RMA and GCRMA (defined
in Section 7.3.2), perform summarisation as a step within a wider framework of normalisation.

7.3 Normalisation Methods

This section describes a number of the most commonly used methods for normalisation,
background adjustment and/or expression index estimation.

7.3.1 Microarray Suite 5 (MAS 5.0)

Initially, MAS 4.0 was introduced by Affymetrix, where background elimination was simply
done by subtracting each MM probe value from its corresponding PM probe value. It was then
shown that many MM values actually exceed the values of PM probes because MM probes do
have a level of specific binding in addition to NSB. Thus, Affymetrix introduced MAS 5.0
which adopts the background correction procedure (PM−MM∗) such that the MM∗ value is
a tweaked MM, which guarantees the corrected intensity not to be negative. This is provided
by Affymetrix as their default package for normalisation (Hubbell, Liu and Mei, 2002;
Affymetrix, 2002a, b; Irizarry et al., 2003a; Wu et al., 2004; Roberts, 2008).
As discussed earlier in Section 7.2.3, the usage of MM values in background correction has

been criticised by many researchers, which led to the introduction of many normalisation
methods that depend merely on PM values (Naef et al., 2001; Calza and Pawitan, 2010).
For example, Irizarry and colleagues showed that the variance of log PM−MM∗ is generally
larger than that of log(PM) values (Irizarry et al., 2003b). They also noticed that the relation
between the variance of log PM−MM∗ and the average intensity of the corresponding probe
set is reciprocal; that is, it is significantly higher at lower intensities (Irizarry et al., 2003b).
Even though, MAS 5.0 is still a popular method (Cahan et al., 2007). In some studies, it was

shown to outperform many other methods which used to be known as better than it such as
RMA. The very recent study by Furlotte and colleagues used their proposed literature-based
procedure to evaluate different microarray-normalisation methods. The cases included in their
study showed an outperformance of the MAS5 method over positional-dependent nearest
neighbour (PDNN) and RMA (Furlotte et al., 2011).

7.3.2 Robust Multi-array Average (RMA)

In order to overcome the problematic issues related to the methods that use MM values for
background correction in Affymetrix microarrays, Irizarry and colleagues proposed a method
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which depends only on PM probes and tackles the background-correction problem based
on the analysis of the empirical distribution of the intensities; this method is called RMA
(Bolstad et al., 2003; Irizarry et al., 2003a).
RMA is not only a method for background correction, but also a framework of background

correction, expression normalisation and summarisation. By the time this chapter is being writ-
ten, more than 4500 citations have been recorded in Scopus for that Irizarry and colleagues’
publication which proposed the RMA method (Irizarry et al., 2003a). This supports what
many researchers have mentioned in that this has become a very popular method in Affymetrix
microarrays normalisation (Cahan et al., 2007; Vendettuoli, Doyle and Hofmann, 2011).
RMA assumes a common mean background using only PM data. The background is

subtracted, then the intensities are adjusted for identical distributions. This includes performing
logarithmic transformation followed by quantile normalisation, cyclic lowess or contrast
normalisation; quantile normalisation is usually the most rapid of them. Then RMA performs
summarisation (Irizarry et al., 2003a; Vendettuoli, Doyle and Hofmann, 2011).
The summarisation part is performed by fitting the linear model presented by Equation (7.4):

Yijn = μin + αjn + ϵijn 7 4

The value Yijn represents the background adjusted, normalised and log transformed PM
intensity value for the jth probe pair within the nth gene’s probe-set in the ith array. The average
log-scale expression for this nth gene in the ith array is μin, and this is the parameter to be
estimated as the gene expression value. The value αjn is the probe affinity and is assumed

to meet the constraint
j
αj = 0 for all probe-sets. The last term, ϵijn, represents an independent

identically distributed (i.i.d.) error term with zero-mean (Irizarry et al., 2003a).

7.3.2.1 GCRMA

Wu and colleagues investigated the way in which the RMA method tackles Affymetrix micro-
arrays background adjustment, pointed out the loss of accuracy caused by RMA’s sacrifice in
favour of gains in precision, and proposed a different background-adjustment approach (Wu
et al., 2004). They proposed plugging this background-adjustment approach with the original
RMA’s normalisation and summarisation steps. Thus, this is considered as a variant of the
RMA method, and it is named GCRMA, where the ‘GC’ part is taken from the two symbols ‘G’
and ‘C’ representing the two nucleobases –Guanine and Cytosine, respectively (Wu et al., 2004).
The movement from RMA to GCRMA was motivated by Naef and Magnasco’s observation

that probes’ affinity is sequence-dependent. This means that both specific and NSB are
significantly affected by the sequence of the probe (Naef and Magnasco, 2003). Each of the
Affymetrix probes consists of 25 nucleobases, and it was found that the contribution of each
of these bases to the overall affinity of the probe depends on both the type of the nucleobase
(A, T, G or C) and its position. Thus, the affinity of the probe (α) is modelled as the summation
of the contributions of its 25 nucleobases [Equation (7.5)],

α =
25

k = 1

μbk ,k 7 5
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where μbk ,k is the contribution of the nucleobase (bk A,T ,G,C ) found at the kth position.
The values of μbk ,k were estimated empirically from large amounts of microarray data by fitting
a polynomial of degree three (Naef and Magnasco, 2003), or by fitting a spline with five
degrees of freedom (Wu et al., 2004). The results of the latter fitting clearly showed the
significant differences of contributions to the affinity for different types of nucleobases and
for different positions within the probe’s sequence.
The measurements of the PM and MM values are modelled as shown in Equations (7.6)

and (7.7) (Wu et al., 2004),

PM =OPM +NPM + S 7 6

MM =OMM +NMM +ϕS 7 7

where OPM and OMM represent the optical noise of the PM and the MM probes respectively,
NPM and NMM represent the NSB contribution to the intensity for the PM and the MM probes
respectively, S is a quantity proportional to the mRNA concentration (quantity of interest), and
ϕ 0,1 is a factor which accounts for the fact that MM probes might have specific binding
which is larger than zero but less than that of PM probes.
The optical noise is assumed to be lognormally distributed, but because its variance is ignor-

able compared with that of NSB, it is assumed as an array-dependent constant. The estimation
of the optical noise (Ô) is considered to be just smaller than the minimum probe intensity in that

array (O =min min
j
PMj, min

j
MMj −1). The value of the factor ϕ is set to zero as the empir-

ical results showed that this would not affect the performance of the method (Wu et al., 2004).
TheNSBlog-values log(NPM) and log(NMM) areassumed tohaveabivariate-normaldistribution

with the respectivemeans ofmPM andmMM, the common variance σ2, and the common correlation
constant across theprobesρ. ThesemeansaremPM ≡ h αPM andmMM ≡ h αMM , such that h(.) is
a smooth function (almost linear), and the α values are computed as in Equation (7.5).
The value of the correlation constant ρ can be estimated from the data, and because it should

not change from array to array, it was estimated to be 0.7 (Wu et al., 2004). If the parameters
mPM,mMM and σ2 were estimated from the data and hwas known, the statistical problem of the
GCRMA method can then be formalised as the problem of estimating the value of interest S.
Wu and colleagues proposed three main approaches to carry out this estimation –maximum-

likelihood estimate (MLE), mean squared error (MSE) and an empirical Bayes estimate
(Wu et al., 2004). The results of their most emphasised approach, the empirical Bayes estimate,
showed that ignoring the MM probes in estimation does not significantly affect the perfor-
mance. They even showed that, for highly expressed genes, the only-PM-based estimations
show better results (Wu et al., 2004).
This normalisation method has been very popular in Affymetrix microarray data analysis

(Cahan et al., 2007). It is implemented in MATLAB as the function ‘gcrma’ within the bio-
informatics toolbox. It is also implemented as an R language package for the Bioconductor
project (Wu and Irizarry, 2007a).

7.3.2.2 Other RMA Variants

Frozen RMA (fRMA) was proposed as a variation of the RMA method in McCall, Bolstad
and Irizarry (2010) and was used in McCall, Jaffee and Irizarry (2012). Thawing fRMA
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is a variation of the fRMA method proposed in McCall and Irizarry (2011). Another
modification over the RMA method was proposed in Ritchie et al. (2007) and recommended
for being used in Calza and Pawitan (2010). It is worth mentioning that Rafael Irizarry, the
professor at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland,
is an author in the papers which propose RMA, GCRMA, fRMA and thawing fRMA. In
2010, he was ranked as the second-most cited mathematical scientist in the world by Essential
Science Indicators. This observation might indicate that the developments of these variants of
the RMAmethod have been carried out in a series of enhancements by the same research group,
or directed by the same guide.

7.3.3 Quantile Normalisation

This method, which was proposed by Bolstad and colleagues (2003), has become the most
popular method for normalising one-channel microarray datasets (Cahan et al., 2007; Roberts,
2008). This method is based on the assumption that all of the arrays have a similar signal dis-
tribution, which is typical for most of the microarray datasets (Bolstad et al., 2003; Roberts,
2008; Calza and Pawitan, 2010). However, for the cases in which different samples are taken
from very different tissue types, quantile normalisation should be avoided as the underlying
assumption would not be valid any more (Roberts, 2008; Calza and Pawitan, 2010;
Wang et al., 2012).
The steps of quantile normalisation are summarised as follows:

1. Given M arrays of length (number of elements) N, form X of dimension N ×M where each
column represents an array.

2. Sort each column to get Xsorted.
3. Take the means across rows of Xsorted and assign this mean to each element of that row

to get Xsorted .
4. Rearrange the elements in the columns of Xsorted to have the same order as in X. This results

in the normalised array Xnormalised.

Bolstad and collaborators discussed then that this forces the quantiles to be equal in all of the
given arrays, which might not be very accurate at very high intensities, although Bolstad and
collaborators followed up by mentioning that, because probe-set expression values were
calculated by considering multiple probes, this problem did not seem to be a major problem
any more (Bolstad et al., 2003).
Irizarry and colleagues used some controlled datasets to show the importance of normalisa-

tion for oligonucleotide microarrays (Irizarry et al., 2003a). They used a ‘dilution dataset’ in
which a range of six known proportions of the cRNA taken from human liver tissues were
considered; five replicates were taken per each of these six samples and were scanned by five
different scanners. Another dataset which they used was a spike-in data in which all genes are
expected to be non-differentially expressed except for 20 genes fromwhich fragments at known
concentrations were added. These datasets are real (not simulated) datasets but with controls
that provide the ground truth information. Their analysis of the distribution of intensities and
log-ratios from these datasets showed the necessity of normalisation and showed that quantile
normalisation meets the requirements as needed (Irizarry et al., 2003a).
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Calza and Pawitan included quantile normalisation in their recent review as one of the most
commonly used techniques for normalising one-channel arrays (Calza and Pawitan, 2010).
They mentioned that it can deal with non-linear intensity distributions, is simple to understand
and implement, and is fast to run. They also mentioned that it is usually performed over the
entire set of probes before summarisation so as to exploit as much information as possible
(Calza and Pawitan, 2010). However, this method did not perform well in some studies;
namely, when compared with some less popular methods over DNA methylation microarray
datasets (Adriaens et al., 2012).

7.3.4 Locally Weighted Scatter-plot Smoothing (Lowess) Normalisation

This was proposed by Yang and colleagues (2002) based on the statistical regression model
proposed in Cleveland (1979). The excellent review of normalisation methods in Nature
Genetics byQuackenbush also presented thismethod in a very clearway and showed its strength
in normalisation (Quackenbush, 2002). It takes non-linearity into consideration and it is themost
commonlyusedmethod in the caseofwithin-slide two-channel normalisation (Smyth andSpeed,
2003; Sievertzon, Nilsson and Lundeberg, 2006; Roberts, 2008; Calza and Pawitan, 2010).
The method was motivated by the obvious bias between the Cy5-dye and the Cy3-dye in

two-channel microarrays, that is, the intensity-dependent effects (Irizarry et al., 2003a;
Sievertzon, Nilsson and Lundeberg, 2006). MA plots, as introduced in Section 7.2.5
(see Figures 7.1 and 7.2a), show this bias clearly. The lowess normalisation method aims at
correcting this bias (Quackenbush, 2002; Yang et al., 2002; Xie et al., 2004).

7.3.4.1 Mathematical Formulation

Assume that xi = log2 RiGi and yi = log2 Ri Gi , where Ri and Gi are the red and the green
intensities of the ith probe/gene. An MA plot would plot y versus x. A robust lowess smoother
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Figure 7.2 MA plots for the yeast genome sample with the NCBI accession number GSM81075
(a) before and (b) after normalisation
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is used for regression in order to estimate y(xk) which represents the best-fit average based on
the experimentally observed values (Quackenbush, 2002; Sievertzon, Nilsson and Lundeberg,
2006). While estimating the y value for the point x, a fraction of points closest to the point x can
be considered instead of the entire sample set; this fraction of points is called the span. If the
span is too small, it leads to over-fitting, while if it is too large it leads to inefficient normal-
isation (Sievertzon, Nilsson and Lundeberg, 2006). Spans of about 0.3 (30%) are usually used
(Quackenbush, 2002; Yang et al., 2002; Sievertzon, Nilsson and Lundeberg, 2006).
Then, log-ratio correction is applied in a point-by-point manner by subtracting the best-fit

estimate from the original log-ratio. This is represented by Equation (7.8)

log2 Ti = log2 Ti −y xi = log2 Ti − log2 2y xi 7 8

or by Equation (7.9).

log2 Ti = log2 Ti ×
1

2y xi
= log2

Ri

Gi
×

1

2y xi
7 9

In terms of intensity correction, this is equivalent to Equation (7.10).

Gi =Gi × 2
y xi and Ri =Ri 7 10

An example of lowess normalised data is shown in Figure 7.2b. Lowess normalisation was
used successfully by many other studies (Quackenbush, 2002; Xie et al., 2004; Önskog
et al., 2011).

7.3.4.2 Global and Local Normalisation

Lowess as well as many other normalisation algorithms can be applied either locally or
globally. For example, it might be that different regions of the microarray chip were printed
by different pins, or it might be any other reason for which different regions of the microarray
have different local properties. In this case, the condition for such local normalisation to be
valid is that it must, on its own, satisfy the conditions for the global normalisation. For example,
this local region should not have a bias such as containing mostly differentially expressed
genes, otherwise lowess normalisation over this region would be invalid (Quackenbush,
2002; Yang et al., 2002; Xie et al., 2004; Sievertzon, Nilsson and Lundeberg, 2006).
Even though Önskog and colleagues noted that global lowess normalisation showed

marginally better results over local print-tip lowess in their comprehensive comparative study,
their main conclusion was that normalisation is significantly better than no normalisation for
microarray data analysis (Önskog et al., 2011).

7.3.4.3 Variance Regularisation

In local lowess normalisation (Huber et al., 2002; Quackenbush, 2002; Yang et al., 2002), after
making the mean of the log-ratios within each region (sub-grid) equal to zero, the variance of
the ratios among the sub-grids might vary. To solve this issue, the log-ratios are scaled to have
similar variance values across sub-grids. Because the mean has become zero, the variance
within the nth sub-grid will be as given in Equation (7.11),
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σ2n =
N

j = 1

log2 Tj
2

7 11

where N is the number of elements within this sub-grid. Let ak be the scaling factor for the kth

sub-grid. It is calculated by dividing the variance within this sub-grid by the geometric mean of
the variance values of all of the Mgrids sub-grids. It is formulated as shown in Equation (7.12).

ak =
σ2k

Mgrids

n= 1
σ2n

1
Mgrids

7 12

Accordingly, the corrected log-ratio values are as shown in Equation (7.13)

log2 Ti =
log2 Ti

ak
7 13

and the corrected intensities are given in Equation (7.14).

Gi = Gi
1 ak and Ri = Ri

1 ak 7 14

7.3.4.4 Cyclic Lowess

Cyclic lowess is a one-channel probe arrays-normalisation technique based on the two-channel
lowess normalisation technique (Bolstad et al., 2003). In this technique, the correction happens
in a pairwise manner amongst the different arrays rather than between the different channels.
Based on the kth array, the pairwise lowess adjustments for all of the other arrays paired with
this array are calculated and applied. Empirically, after running some iterations of adjustments,
the changes become small. However, this method might be time consuming (Bolstad et al.,
2003; Calza and Pawitan, 2010).

7.3.4.5 Confounding Studies

It was shown by Schmidt and colleagues that, in some cases, normalisation methods would
affect the results of microarray data analysis significantly. In their case of study, differentially
expressed genes selected after performing lowess normalisation were incoherent and had many
contradictory observations (Schmidt et al., 2011). When applied over two-channel ChIP-chip
datasets, it showed a worse performance than some other unpopular methods such as T-quantile
and Tukey’s bi-weight scaling (Adriaens et al., 2012).

7.3.5 Scaling Methods

7.3.5.1 One-channel Arrays

This method, which can be used for one-channel arrays, is described in Bolstad et al. (2003).
First of all, a baseline array is chosen which has the median of the medians within all of the
arrays. Let xbase be the baseline array, xi be the ith array, xbase and xi be the trimmed mean
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intensities for the baseline array and the ith array respectively, and xi be the normalised ith array.
The trimmed mean intensities can be calculated after excluding, for example, the highest and
the lowest 2% intensity values. Normalisation is then achieved by using Equations (7.15)
and (7.16).

βi =
xbase
xi

7 15

xi = βixi 7 16

This method is equivalent to linear fitting; a non-linear method was proposed in Bolstad
et al. (2003).

7.3.5.2 Two-channel Arrays

Yang and colleagues proposed a scaling method to be performed over log-ratios of two-channel
arrays after within-slide normalisation had been carried out (Yang et al., 2002). In this case, the
log-ratios within each slide (array) would be centred about zero but might have varying variances.
Assume that the variance of the ith slide is represented by σ2i = a

2
i σ

2, where the term σ2 is the
true log-ratios variance and the term a2i is the scaling factor for this slide. Normalisation is done
by estimating the values of ai then eliminating them. Based on the assumption that log-ratios are

normally distributed, the forced constraint is
I

i = 1

a2i , where I is the number of slides. So, the

MLE for ai will be as given in Equation (7.17),

a2i =

ni

j = 1
M2

ij

I

k = 1

nk

j= 1
M2

kj
I

7 17

where M2
ij is the log-ratio for the jth gene/probe in the ith slide and ni is the number of genes/

probes in the ith slide. A robust alternative estimation is given by Equation (7.18):

ai =
MADi

I

i = 1
MADj

I
7 18

where MADi = median
j

Mij−median
j

Mij .

7.3.6 Model-based Expression Index (MBEI)

Li and Wong statistically analysed the oligonucleotide microarrays expression at the probe
level (Li and Wong, 2001a). They suggested a multiplicative model for the intensities of
the MM and the PM probes as in Equations (7.19) and (7.20), respectively. The probe-pair
difference (PM−MM) is shown in Equation (7.21).
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MMij = vj + θiαj + ε 7 19

PMij = vj + θiαj + θiϕj + ε 7 20

yij =PMij−MMij = θiϕj + εij 7 21

The valuesMMij andPMij, respectively, represent theMMand PM average intensity levels of
the jth probe-pair in the ith array for the gene under consideration. vj is due to non-specific hybri-
disation, θi is themRNAconcentration of the target,αj is the rate of linear increase of the intensity
of theMMij probe with respect to the increase of the mRNA concentration, ϕj is the additional
rate of increase of the intensity of the PMij probe with respect to the increase of the mRNA
concentration, and ε is a generic random error term. The rates αj and ϕj are non-negative values.
The reasoning behind this model is that the PM and the MM probes have a background caused
by non-specific hybridisation, over which the intensities increase linearly with respect to the
concentration of the mRNA. The rate of increase in the PM probe is expected to be higher than
that in theMMprobe (αj +ϕj vs αj) (Li andWong, 2001a). They empirically fitted this model to
some real datasets and compared it with an additive model. The multiplicative model was
shown to fit the data much better than did the additive one (Li and Wong, 2001a).
This analysis resulted in identifying the outlier arrays and probes, and then excluding

them. The method is based on estimating the variables in the aforementioned model, then
identifying the probes with high standard error values compared with the fitted model as
outliers (Li and Wong, 2001a).
The same authors published another work soon after that, in which they generalise the MBEI

method tobeused toPM-onlymicroarrays aswell (Li andWong, 2001b).Theyalsopoint out that
they have made theDNA-Chip Analyser software available publically at http://www.dchip.org.

7.3.7 Other Normalisation Methods

7.3.7.1 Contrast Normalisation

This was proposed with full details by Åstrand (2003) and was used with a brief description in
Bolstad et al. (2003). This is for single-channel oligonucleotide arrays and is a non-linear
method for normalising feature intensities (Åstrand, 2003). It involves changing the basis of
the data through a transformation with an orthonormal transformation matrix, then using local
regression (loess) non-linear fitting curves to normalise all of the arrays versus a baseline array.

7.3.7.2 Median/Mean Normalisation

This is a global normalisation method performed by simply subtracting a constant from the
intensity log-ratios within a slide. This constant is usually the log-ratios’ median or mean
(Dudoit et al., 2002; Schmidt et al., 2011). In some studies, this has been shown to perform
better than some of the more sophisticated methods such as lowess (Schmidt et al., 2011).

7.3.7.3 Three-parameter Normalisation

This was proposed by Konishi and is meant mainly to normalise different one-channel
microarray datasets so they become comparable (Konishi, 2004). This method assumes that
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the distribution within any single microarray is stable. The background is estimated and
considered uniform for any single dataset; this background is estimated as the constant which,
when subtracted from the entire dataset, allows the revised dataset to become the best fit to the
given model. The following text is the description of the method as detailed in Konishi (2004):
The method assumes that the original intensity data, (ri) for i = 1, 2… n, obey a lognormal

distribution. The probability density function (pdf) of the intensity data used data used is given
in Equation (7.22),

f ri =
1

σ 2π
e− log ri−γ + μ2

2σ2 for ri > γ 7 22

where σ, μ and γ are the shape, scale and threshold parameters, respectively.
The parameter σ is found through trial and improvement calculation processes. In the trial,

the distribution of log ri−γ is checked by normal probability plotting (NIST, 2010), and the
value that gives the best fit to the model is selected for γ. The fitness is evaluated by the sum of
absolute differences between the model and log ri−γ , within the interquartile range of data.
The parameter μ is the median of log ri−γ , and the parameter σ is found from the interquartile
range of log ri−γ ; these are known as robust alternatives for the arithmetic mean and standard
deviation, respectively. Parameters μ and σ are found for each data grid, a group of data for
DNA spots that were printed by an identical pin in order to avoid divergences caused by
pin-based differences (Schuchhardt et al., 2000). Z-normalisation is carried out for each datum
as shown in Equation (7.23).

Zri =
log ri−γ −μ

σ
7 23

Intensity data (ri) less than γ are treated as ‘data not detected’, since such data might contain
negative noise larger than the signal.
This model allows for finding the lowest value unaffected by additive noise and the

highest value unaffected by saturation. This is done by noticing that, beyond these two
values, the values deviate from the expected model distribution (Konishi, 2004; Konishi
et al., 2008).

7.3.7.4 Total Intensity Normalisation

For two-channel arrays, this is based on many assumptions as discussed in Quackenbush
(2002). Assume that the red and green channels’ intensities are R andG, respectively. The ratio
T would be as given in Equation (7.24).

T =
R

G
7 24

If the number of elements (genes) in the array isNarray,Ntotalwill be the normalisation factor,
and is expressed as shown in Equation (7.25).

Ntotal =

Narray

i= 1
Ri

Narray

i = 1
Gi

7 25
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One or both intensities are scaled accordingly, for example [Equation (7.26)]

R =R, G =NtotalG 7 26

Then the adjusted ratio will be as given in Equation (7.27).

T =
1

Ntotal

R

G
7 27

This makes the mean ratio be equal to unity. In the log-ratio case, this is equivalent to
Equation (7.28).

log2 T = log2 T − log2 Ntotal 7 28

7.3.7.5 Average Difference (AD or AvDiff)

This is the one-channel normalisation procedure implemented in the Affymetrix software
GeneChip (Åstrand, 2003). It is based on the average difference (AD) between the PM
intensity and the MM intensity. Many variations were proposed regarding how to remove
the outliers before averaging (Irizarry et al., 2003a). Themathematical expression of the AvDiff
is shown in Equation (7.29),

AvDiff =
1
A

j A

PMj−MMj 7 29

where A is the set of probe-pairs within the same probe-set after eliminating the outliers
(Åstrand, 2003), and A is the cardinality of A.

7.3.7.6 Other Methods

Many ratio-based scheme-normalisation methods have been proposed in the literature (Chen,
Dougherty and Bittner, 1997; Tseng et al., 2001; Durbin et al., 2002; Huber et al., 2002), but
they were criticised for either showing intensity-dependent fluctuations or having questionable
stability (Konishi, 2004).
Other methods include analysis of variance-based (ANOVA-based) normalisation (Kerr,

Martin and Churchill, 2000), variance stabilisation normalisation (VSN) (Motakis et al.,
2006), self-consistency and local regression (Kepler, Crosby and Morgan, 2002). Sievertzon
and colleagues discussed the latter one and noticed that it is a similar approach to lowess
normalisation but with a different local regression method (Sievertzon, Nilsson and Lundeberg,
2006). Another method is the probe logarithmic intensity error (PLIER), which is a newer
algorithm developed by Affymetrix that uses an improved (PM−MM) correction and quantile
normalisation (Affymetrix, 2005; Roberts, 2008).
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7.4 Discussion and Summary

Microarrays measure the expression values of thousands of genes simultaneously and quantify
those measurements in the form of colour intensities. One-channel microarrays provide a single
expression measurement for any single gene at a particular condition, while two-channel micro-
arrays provide two values, one for the target condition and one for the control; the ratio between
the experimental and the control values represents the value considered for further analysis.
Various issues affect the accuracy of both types of microarrays’ measurements and are tackled
by normalisation methods. One issue is the validity of comparing the values of different genes
within one microarray sample (aka chip or slide), and their values across multiple samples
(chips or slides). Those two issues are tackled by within-slide methods and between-slides
methods, respectively (Yang et al., 2002; Sievertzon, Nilsson and Lundeberg, 2006; Verducci
et al., 2006). Quantile normalisation is commonly used to correct the within-slide differences in
one-channel microarrays (Bolstad et al., 2003; Roberts, 2008) while the lowess normalisation
is commonly used in two-channel microarrays (Quackenbush, 2002; Yang et al., 2002).
Another issue is the background noise, its causes, modelling, and correction. Different

approaches were proposed to tackle this issue, such as the addition of a MM probe paired with
each PM probe. This approach assumed that the MM probe would measure the background
noise mainly caused by NSB, and the PM probe would measure the original signal added to
that noise (Wu, 2009). However, many following studies showed that in various cases the value
measured by the MM probe was larger than that of the PM, which does not conform to the
original assumption (Naef and Magnasco, 2003; Ahmed, 2006). Consequently, the Microarray
Suite 5 (MAS 5.0) provided by Affymetrix considered a modified version of the MM probes’
measurements that never exceed that of the PM probes (Affymetrix, 2002a; Roberts, 2008). On
the other hand, many normalisation methods were designed to ignore MM probes and use PM
probes only, such as the RMA method (Bolstad et al., 2003; Irizarry et al., 2003a).
As for the statistical distribution of the expression values, it was found to be lognormal in

most of the cases. Therefore logarithmic transformation of the expression values has been
commonly adopted by microarray analysis studies (Kreil and Russell, 2005).
Other types of major issues include intensity-based bias, which is the fact that the sensitivity

of the microarray probes changes non-linearly with their intensity, that is with the amount of
exposed mRNA. MA scatter plots, which plot log-ratios (M) versus abundance values (A) of
two-channel microarray expression values, are used to visualise this bias, and then to correct it
by using the lowess normalisation method (Dudoit et al., 2002).

To increase the reliability of the microarray measurements, several replicates are usually
considered for the same biological condition. Consequently, multiple values are obtained
for the same condition and need to be summarised (Churchill, 2002; Quackenbush, 2002).
Summarisation can be simply by taking the median or the mean of the values. If the number
of replicates was small, for example three, the median would be a better choice because it is
more robust than the mean at such low numbers of replicates.
Taken together, datasets vary in their types and statistical properties such as the number of

channels, the statistical distribution, the types of probes, the number of replicates and others.
Given that many variations of normalisation methods exist while being differentially custo-
mised to different types of datasets, understanding such variables is crucial for the correct
choice of normalisation method (Table 7.1).
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8
Feature Selection

8.1 Introduction

In gene expression datasets [e.g. microarrays and next-generation sequencing (NGS)], the num-
ber of genes N tends to be much larger than the number of samples or biological conditions M
(N >>M) (Tarca, Romero and Draghici, 2006). However, most of the genes in such a dataset
would be irrelevant to the problem in hand. Depending on the type of downstream analysis and
research objectives, a subset of the genes would be selected before progression to the following
steps of analysis. The same issue applies to the other types of expression datasets such as pro-
teomics, glycomics and metabolomics (Haynes et al., 2013).

Feature selection (FS) techniques are employed to select the subset of features which is
expected to result in better separability of the given data objects. For example, supervised clas-
sification techniques can be used to classify a set of samples in a gene expression dataset based
on their expression values over genes. Genes are considered in this case as features for those
samples, and FS techniques would be utilised to select the subset of genes expected to lead to
building better supervised classifiers; this is known as gene selection.A classifier in the context
of gene expression data, as discussed in Chapter 2, is a model which is trained by using the
expression profiles of a number of samples with known classes, in order to be able to predict
the class of a previously unseen sample. For example, a classifier would be trained to distin-
guish between samples from healthy individuals and individuals with breast cancer based on
their gene expression profiles (Tarca, Romero and Draghici, 2006; Hassanien, Al-Shammari
and Ghali, 2013).
It is a major issue in designing classifiers that the number of genes (features) is usually much

larger than the number of samples (N >>M). This is known as the curse of dimensionality and is
tackled by gene selection in order to reduce the dimensionality, that is, the number of genes
(Fang, Martin and Wang, 2012). Gene selection aims at identifying the non-redundant subset
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of genes which are expressed differentially between the different classes or conditions between
which the classifier should differentiate. Two conditions are required in the selected subset of
genes – first, they need to be informative in that they show significant difference in their expres-
sion levels across classes or conditions; second, they need to be non-redundant, that is, if two or
more genes provide the same useful piece of information, including one of them is sufficient
while including all of them leads to redundancy.
Moreover, machine-learning techniques, especially clustering, would be applied to genes

while considering the expression samples as features. In this case, FS represents sample selection
rather than gene selection. However, it is more common to employ feature generation (FG)meth-
ods instead of FS methods in such cases, which produce a new set of features, usually fewer than
the original ones, that represent linear or non-linear combinations of the original features.
In contrast, many studies hold the objective of identifying all of the genes that are differen-

tially expressed between two or more biological conditions because this differential expression
itself is biologically meaningful. Having said that, dimensionality reduction and the improve-
ment of a classifier’s feasibility and accuracy are not within the scope of such studies, and the
issue of redundancy is irrelevant to them (Tarca, Romero and Draghici, 2006).
This chapter covers the aspect of FS and GS, while the following chapter covers the aspect of

differential expression. Although this chapter mainly considers gene expression datasets, the
same concepts apply to the other expression datasets such as proteomic and metabolomic data-
sets. However, the presentation will be clearer and smoother by providing complete discussion
about the more mature gene expression datasets instead of naming the possibilities: gene expres-
sion, protein expression, metabolic expression, and so on repetitively throughout the chapter.

8.2 FS and FG – Problem Definition

A genetic expression dataset with N genes and M samples can be formulated as given in
Equation (8.1).

XN ×M =

x11 x1M

xN1 xNM

8 1

FS is the process of selecting the subset of non-redundant features that is most informative
regarding downstream analysis. It can be performed over either dimension of the matrix
depending on the type of following analysis, that is, it can be by considering genes as features
and selecting a subset of genes accordingly by FS, and can be by considering samples as
features and selecting a subset of samples accordingly.
In order to generalise the problem, we consider that the data is composed of N objects, each

of which is represented by a row vector containing values of M features. This dataset can be
formulated as shown in Equation (8.2).

X =

x1
x2

xN

=

x11 x1M

xN1 xNM

, xi = xi1 xi2 … xiM 8 2
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Let the original set of features be F = f1, f2, … , fM ; FS selects a subset of m features
from F, labelled as S, where S⊂ F.
In contrast, FG methods generate a new set of m features, S, which are linear or non-linear

combinations of the original features (Mu, Nandi and Rangayyan, 2007). FS and FG are
expressed in the following two Equations, (8.3) and (8.4), respectively,

F = f1… fM
FS

S= fs1… fsm ⊂F, s1…sm ⊂ 1…M 8 3

F = f1 … fM
FG

S = gi 1 ≤ i ≤m, gi = hi F 8 4

where hi(F) calculates the value of the ith generated feature as a function of the original
features F.
FS and FG methods are classified into two main classes: filter methods (open-loop) and

wrapper methods (closed-loop). In the context of supervised classification analysis, filter meth-
ods select features without considering the classifier that will be used, while wrapper methods,
as closed-loop methods, consider iterations of feedback from the classifier (Day and Nandi,
2011). Such methods aim at maximising the classification accuracy with respect to the selected
subset of genes.
As open-loop methods are more relevant to the context of this book, that is, unsupervised

clustering, the following sections present some open-loop FS and FG methods.

8.3 Consecutive Ranking

Consecutive ranking is a recursive process which depends on the information content in the
subset of selected features, denoted as I(S). Two main classes of consecutive ranking exist,
namely forward search (most informative first admitted) and backward elimination (least use-
ful first eliminated) (Kung and Mak, 2008), and they are detailed below.

8.3.1 Forward Search (Most Informative First Admitted)

Forward search starts with an empty list of selected features S, and then admits the feature
which contains the largest amount of information. In each round, the feature which adds the
largest amount of information content to the set S is admitted. The mathematical annotation
for the iteration (t) is shown in Equation (8.5);

St + 1
admit

argmax
fi S t

I St fi 8 5

when the size of S reaches the predefined number of selected features m, the process
terminates.
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8.3.2 Backward Elimination (Least Useful First Eliminated)

Backward elimination is a form of over-select-then-prune strategy. It starts with the complete
list of M features contained in S, and then eliminates features iteratively until S has only m
features. In each round, the feature which if eliminated causes the least loss of information con-
tent is the one which is eliminated. The tth iteration of backward elimination is represented as
shown in Equation (8.6).

St + 1
eliminate

argmax
fi S t

I St − fi 8 6

Although the termination criterion can be that the size of S has reached m, other criteria can
also be considered. Pre-setting the number of the selected features m is not an easy task and
cannot be chosen arbitrarily. In many cases the number of selected features is kept flexible
while the quality of the set S is considered as the termination criterion. For example, the process
can be terminated when I(S) reaches about 90% of the information contained in the complete set
I(complete set).

8.4 Individual Ranking

Individual ranking methods rank the features in a descending order, and then select the top
m of them. Different criteria have been employed here, and some of them are detailed in the
following subsections.

8.4.1 Information Content

This criterion is used in unsupervised learning and is defined in different ways. The most
common information content metric is Shannon’s entropy (Kadota et al., 2006; Kung and
Mak, 2008), which is defined as given in Equations (8.7) and (8.8),

H j = −
N

i= 1

pij log2 pij 8 7

pij =
xij

N

i∗ = 1

xi∗j

8 8

whereH(j) is the entropy, that is, the information content, of the jth feature, N is the number of
objects, pij is the ratio between the jth feature of the ith object and the total feature values of that
object, and xij/ xi∗j is the value of the jth feature of the ith/i∗th object.
The value of the entropy for each feature ranges from 0 to log2N. The entropy is equal to

log2N when the feature is equally valued across all of the objects, while it becomes equal to
zero when the feature has a high value for a single object and low values for the others. This
means that: the smaller the value of the entropy, the more object-specific the feature.
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8.4.2 SNR Criteria

This class of criteria is applied to datasets in which the objects belong to a number of classes
(groups). The argument on which all the Signal-to-noise Ratio (SNR) criteria rely is that better
(more influencing, more informative) features distribute the data objects such that the values of
the objects which belong to the same class are close to each other while being far from the
values of the objects in the other classes, that is, small intra-class variance and large inter-class
variance. Higher mean distances and lower intra-class variance values lead to better separability
for classes. Figure 8.1 shows an illustrative example for a two-class problem where different
couples of features are selected and lead to different separability characteristics.
The general SNR formula is shown in Equation (8.9).

SNR =
Signal

Noise
=

Distance

Intra−Class Variance
8 9

Below are some of the most common SNR-based gene-ranking criteria for two-class pro-
blems (except for the F-ratio) where the two classes are denoted as C+ and C− respectively,
and μ+

j , μ
−
j , σ

+
j , σ

−
j are the class-conditional means and standard deviations for both classes,

fj

fi

fj

fj

fi

fj

Class 1

(a) (b)

(c) (d)

Class 2

fi fi

Figure 8.1 Two-class separability problem; (a) high inter-class distance and low intra-class variance –
the best separability; (b) low inter-class distance and low intra-class variance; (c) high inter-class distance
and high intra-class variance; (d) low inter-class distance and high intra-class variance – the worst
separability
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respectively. Each of the following formulas (8.10)–(8.12) calculates the SNR for the
jth feature.

1. Signed Fisher’s discriminant ratio (signed-FDR):

Signed−FDR j =
μ +
j −μ−

j

σ +
j + σ−

j

8 10

2. Second-order FDR:

FDR j =
μ+
j −μ−

j

2

σ +
j

2
+ σ−

j

2 8 11

3. T-statistic:

zj =
μ +
j −μ−

j

s+j
2

N + +
s−j

2

N −

8 12

where N +andN −are the numbers of objects in the classesC +and C−respectively, s+j
2
and

s−j
2
are defined in Equation (8.13)

s+j
2
= k C+ xjk −μ +

j

2

N + −1
and s−j

2
= k C− xjk −μ−

j

2

N − −1
8 13

4. Symmetric divergence (SD) [Equation (8.14)]

D j =
1
2

σ +
j

2

σ−
j

2 +
σ−
j

2

σ +
j

2 −1 +
1
2

μ +
j −μ−

j

2

σ +
j

2
+ σ−

j

2 8 14

5. F-ratio: This is a generalisation of the t-statistic to problems with (K) classes {C1, C2
… CK},

Equation (8.15),

Fj =

K

k = 1
Nk μkj −μj

2

K−1
K

k = 1
σkj

2
Nk −1 2

N−K

8 15
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where Nk is the number of objects in class Ck, N is the total number of objects, μkj and σ
k
j are the

class-conditional mean and standard deviation for objects in classCk considering the feature (j),
and μj is the global mean for all objects considering the feature (j).

8.5 Principal Component Analysis

Principal component analysis (PCA) is an FG technique which orthogonally transforms the
data points (objects) in a dataset into a new space of orthogonal, linearly uncorrelated features.
The number of features in the new space is less than or equal to the original number of features.
PCA can be applied by performing singular value decomposition (SVD) over a zero-centred

and normalised data matrix (Alter, Brown and Botstein, 2000) or eigenvalue decomposition
over a data covariance or correlation matrix (Trefethen and Bau, 1997). Other techniques
are also used to perform PCA, such as alternating least squares (ALS).

The result of PCA analysis is a list of orthogonally independent principal components (PCs)
(generated features) that are combinations of the original features and have the same number as
them. The PCs are ordered from the most contributing to the variance of the data to the least,
with an associating weighting value, known as the eigenvalue, with each.
The most influential PCs with the highest eigenvalues can be considered as the new features

for the data while discarding the rest of the PCs. The overall result is therefore transforming of
the data from a high-dimensional real-feature space into a relatively low-dimensional orthog-
onally independent generated-feature space.

8.6 Genetic Algorithms and Genetic Programming

The genetic algorithm is a popular optimisation method in which a population of proposed solu-
tions for the problem is driven through different modifying operators to move closer to the
global optimum solution. In FS, the solution is modelled as a list of selected features, or as
a binary string with a length equal to the total number of features where each feature has a cor-
responding binary bit filled with ‘one’ to indicate the inclusion of the feature or with ‘zero’ to
indicate its exclusion. The genetic algorithm for FS has been applied to many bioinformatic
applications (Nandi et al., 2006) as well as other applications (Jack and Nandi, 2000, 2002).
Genetic programming (GP) assumes a population of solutions and progresses in a similar

way to the genetic algorithms (GA) with a main difference; an individual genetic program-
ming solution, in the context of FG, is a mathematical function (programme) that generates
new features by transforming the original features. Genetic programming has been utilised in
a wide range of applications related to FG, such as in breast cancer diagnosis (Guo and Nandi,
2006), mechanical systems (Zhang et al., 2005), and audio-signal processing (Day and
Nandi, 2007).

8.7 Discussion and Summary

High dimensionality is an attribute of biological high-throughput data such as microarrays and
NGS datasets. Applying machine-learning methods, such as supervised classification and
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unsupervised clustering, to those datasets at their original dimensions can be infeasible or
inefficient. Thus, feature selection (FS), that is, selecting a subset of the originally provided
features, during pre-processing can reduce the complexity of analysis and enhance feasibility
and efficiency.
In a gene expression dataset, the expression values of thousands of genes are measured over

multiple samples taken from similar or different biological conditions. If classification or
clustering is to be applied to those samples while considering each gene as a feature, FS tech-
niques aim at selecting the subset of irredundant genes which are expected to provide the best
separability between the samples. On the other hand, if machine-learning techniques are to
be applied to the genes (e.g. gene clustering) while considering the samples as features, FS
techniques aim at selecting the subset of samples which provides best separability between
genes. The same concepts apply to other high-throughput expression datasets from proteomics,
metabolomics, glycomics and others.
Two key attributes are observed in features for them to be selected by FS, to be informative and

not redundant. Informative features are those which contribute to better separability between the
objects that belong to different classes. However, two or more features can be informative but
redundant when they provide the same useful information regarding separability. In such cases,
successful FS would not select all of those redundant features.
FS methods belong to two main classes, filter (open-loop) and wrapper (closed-loop)

methods. Wrapper methods are useful when supervised classification is to be applied to the
dataset following FS. This is because they involve the prospective classifier itself within FS
by considering a feedback loop. However, the scope of this book is focused on unsupervised
clustering rather than supervised classification; therefore, filter (open-loop) methods, such as
consecutive ranking and individual ranking, are more relevant here.
With an overlapping but different view of the features, feature generation (FG) methods,

like PCA, generate a new set of features which are linear or non-linear combinations of the
original features. The aim here is to transform the dataset into a new feature space with lower
dimensionality, in which the objects from different groups have better separability. Table 8.1
lists some resources for feature selection and feature-generation methods.

Table 8.1 Resources for feature selection and FG methods

Method Platform/Package Function

Feature ranking MATLAB Rank features
R/F Selector cutoff.k

cutoff.k.percent
cutoff.biggest.diff

Random feature selection MATLAB Rand features
PCA MATLAB pca

R/stats princomp
Genetic algorithm MATLAB ga

R/genalg rbga
rbga.bin
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9
Differential Expression

9.1 Introduction

Many genes, proteins, or other biological molecules, are required to be differentially expressed
between different biological conditions, that is, their expression levels are purposefully and
consistently different between such conditions. For example, when cells are moved from
growth conditions to stress conditions, the genes that produce the machineries which synthesise
proteins in large amounts needed for growth are down-regulated, that is, their levels of
expression and activity are severely decreased. On the other hand, those genes which are
required to strengthen a cell’s resistance and respond to stress are up-regulated, in that their
expression levels are highly increased (Gasch et al., 2000).

The identification of differentially expressed genes is one of the key steps in the analysis of
gene, protein or other expression datasets that are composed of expression measurements over
multiple time-points or samples from different biological conditions. This step needs proper
understanding of the statistical distribution of the underlying data, and appropriate assumptions
therein. Therefore, different types of datasets, such as microarrays and next-generation sequen-
cing (NGS), have been analysed while considering different assumptions.
In order to obtain sufficient statistical significance, such datasets usually include multiple

replicates for the same condition. Replicates are of two types, biological and technical.
Biological replicates are different samples taken from different individuals or cultures with
the same biological condition (e.g. cells under growth conditions), while technical replicates
measure the expression of the same biological sample but by using multiple microarray or
NGS chips. Biological replicates compensate for the biological variation caused by other than
the particular condition under consideration, while technical replicates compensate for the
technical variation and noise that are embodied in the used technology.
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In this chapter, we discuss different methods for the identification of differentially expressed
genes or proteins based on microarrays or the NGS technology.

9.2 Fold Change

The most intuitive and the first proposed method to identify differentially expressed genes
between two conditions is fold change. According to this method, genes which show K-fold
change, usually two-fold change, or more between conditions are selected as being differen-
tially expressed (Tarca, Romero and Draghici, 2006; Colak et al., 2012).
Figure 9.1 (left) shows an MA plot, which is a scatter plot of log-ratio values versus

abundance (Dudoit et al., 2002), for the expression values belonging to the two channels of
the microarray sample with the GEO accession GSM81075. If the expression of the ith gene
is xi in the first condition (e.g. microarray channel) and yi in the other channel, the MA plot
scatters the genes on a 2D plain where the horizontal axis represents the abundance values
Ai = log2 xiyi and the vertical axis represents the log-ratio values M = log2 xi yi . The right
panel of Figure 9.1 shows the MA plot for same genes after performing lowess normalisation
(explained Chapter 7) (Yang et al., 2002). Those genes that cross the two log-ratio dashed lines
in the Figure (M = 1.0 andM = −1.0) are the ones which have at least two-fold changes; they are
marked with solid green circles, and they are identified as differentially expressed.
Similarly, fold changes based on MA plots have been considered in proteomics to identify

proteins with differential expression (abundance) (Ting et al., 2009).

9.3 Statistical Hypothesis Testing – Overview

Researchers have argued against the use of fold changes to identify differentially expressed
genes because some important genes, like transcription factors, might be differentially
expressed in a biologically significant manner with fewer than two folds (Tarca, Romero
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Figure 9.1 Two-fold change differentially expressed genes based on MA plots and lowess
normalisation. The left panel shows the plot before normalisation while the right panel shows it after
normalisation. The data are from the two-colour sample with the GEO accession GSM81075
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and Draghici, 2006). Therefore, the trend in this field has moved towards setting null and
research hypotheses regarding differential expression of the genes after being statistically
modelled. The null hypothesis is usually that the gene is not differentially expressed, that is,
it belongs to the mainstream expression distribution of the data, while the research hypothesis
is that it is differentially expressed.
Microarray data, as discussed in Chapter 7, are generally believed to belong to a lognormal

distribution; thus, it is log-transformed prior to further analysis (Kreil and Russell, 2005).
Afterwards, differentially expressed genes are identified by a statistical test, most commonly,
variants of t-statistic (Tarca, Romero and Draghici, 2006). In contrast, NGS expression data do
not follow a lognormal distribution; they have rather been modelled by Poisson or relative
distributions (Fang, Martin and Wang, 2012). The difference is that microarrays measure
continuous analogue expression levels of transcripts while NGS technologies measure discrete
integer counts of transcripts. The rationale behind Poisson modelling of NGS data is that the
measured expression of a transcript is the total number of short sequences aligned to it, and is
therefore the total of many random events. Each single random event is the alignment of a
single short sequence to the target transcript, and is assumed to follow a Bernoulli distribution
with a success probability that is equal to the actual relative expression of that transcript.
By assuming independence between alignment events of different short sequences, the total
number of successful alignments, which is the measured expression value of the transcript,
can be estimated by a Poisson distribution (Fang, Martin and Wang, 2012).

The rest of this section describes the concept of p-values, the visualisation tool volcano plots,
and the required adjustments of p-values. The next section describes many statistical tests that
can be used to identify differentially expressed genes frommicroarrays or the NGS technology,
as well as for protein differential expression (differential abundance). The suitability of each
method to those different technologies will be clearly stated.

9.3.1 p-Values and Volcano Plots

Statistical methods employed for differential expression analysis generally measure the statistical
significance of differential expression by calculating the p-value. The p-value is the probability of
obtaining the observed difference in expression for the gene (or protein) being examined, or
obtaining more extreme differences. The null hypothesis is rejected and the corresponding gene
(or protein) is considered differentially expressed if the p-value is very low (e.g. < 0.01), that is, it
is very unlikely that such difference in expression was obtained merely by chance.
To combine the concepts of statistically derived p-values and fold changes in differential

expression decision making, volcano plots were proposed (Cui and Churchill, 2003).
A volcano plot is a scatter plot on which genes (or proteins, metabolites, glycans, etc.) are scat-
tered, where the horizontal axis represents the base-two logarithm of the fold change and the ver-
tical axis represents the negative base-ten logarithm of the p-value. Thresholds regarding both
measures, fold changes and p-values, can be imposed on the figure to identify differentially
expressed genes (Figure 9.2).

9.3.2 The Multiple-hypothesis Testing Problem

The statistical tests examining genes (or proteins, metabolites or other variables) for differential
expression are designed to test multiple hypotheses in parallel. In other words, the test is applied
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to thousands of genes in parallel and calculates a p-value for each of them,which is used to decide
which genes are differentially expressed and which genes are not. As each of those multiple
hypotheses can be modelled as a random event, it is statistically expected that a fraction of
them will pass the threshold of success merely by chance, leading to many false positives.
If the probability of this by-chance success of hypotheses was 0.01, about 200 out of approxi-
mately 20 000 human genes, or 60 genes out of approximately 6000 yeast genes, would be iden-
tified as differentially expressed by chance. This is a well-known issue when testing a large
number of hypotheses in parallel; it is known as the multiple-hypothesis testing problem, and
has been tackled by different adjustments or corrections for the ordinary p-value (Storey, 2002).
One of the approaches to overcome this problem is to calculate the q-values based on the

p-values. As proposed by Storey, the q-value can be calculated by following four main steps
(Storey, 2002):

1. The p-values are calculated for all of the N genes based on the adopted statistical test.
2. The p-values are ordered such that p1 ≤ p2 ≤ ≤ pN .
3. The q-value for the gene with the largest p-value is set equal to its estimated value of the

positive false discovery rate (pFDR) [Equation (9.1)]:

q pN = pFDRλ pN 9 1
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Figure 9.2 Volcano plot for differential expression analysis. The analysed data are composed of the
samples 1, 2, 3, 10, 11 and 12 from the microarray dataset with the GEO accession GSE22552 where the
first three samples of which are replicates for one condition and the last three are replicates for another
condition. The dataset has 54 675 probes (representatives of genes). The horizontal axis of the plot is the
base-two logarithm of the fold change between intra-condition mean expression values, and the vertical
axis is the negative of the base-ten logarithm of the p-value. In this example, genes with at least two fold
changes (either direction) and having p-values less than or equal to 0.01 are labelled as differentially
expressed. The two vertical dashed lines mark two fold changes and the horizontal dashed line marks the
p-value of 0.01. P-values here were calculated using the moderated t-statistic (explained below)
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The pFDR value for the jth gene is estimated by the formula given in Equation (9.2):

pFDRλ pj =
π0 × pj ×N

R pj
9 2

where pj is the p-value, λ 0,1 is a tuning parameter, π0 is the probability that the
null-hypothesis is true, and R(pj) is the ascending rank of pj amongst the p-values of all
of the genes. The rank R(pi) is equal to the number of genes with p-values equal to or less
than pi. The value of π0 is estimated by using Equation (9.3),

π0 =
W λ

1−λ N
9 3

where W(λ) is the number of genes with p-values greater than λ. Different methods have
been proposed to estimate the best λ-value such as bootstrapping and polynomial fitting.
In both cases, many λ-values covering the range (0,1) are tested in order to choose the best
one of them. In bootstrapping for example, the π0-values corresponding to each tested
λ-value are calculated based on the original complete set of p-values and based on each
bootstrap resampling set; then, the λ-value which leads to the minimum mean square error
(MSE) relative to the minimum π0 from the original set is chosen as the best λ-value
(Storey, 2002).

4. The following genes’ q-values are calculated in a respective order for the p-values pN−1 to
p1 based on the formula shown in Equation (9.4).

q pj =min pFDRλ pj , q pj + 1 9 4

The MATLAB function mafdr as well as the R language package (qvalue) of the Biocon-
ductor project calculate the q-values for a set of p-values or an expression dataset; they also
estimate the internal parameters automatically and calculate related statistics such as pFDR.
Other popular p-value adjustment methods for the multiple-hypothesis testing problem

includeBonferroni’s andHolm’s adjusted p-values (Holm, 1979; Fang,Martin andWang, 2012).

9.4 Statistical Hypothesis Testing – Methods

9.4.1 t-Statistic, Modified t-Statistics and the Analysis of Variance (ANOVA)

Given n1 and n2 replicates for the two biological conditions c1 and c2 between which differ-
ential expression is to be examined, the t-statistic for the jth gene (or protein) is calculated
as shown in Equation (9.5),

tj =
mj1−mj2

s2j1
n1

−
s2j2
n2

9 5

where mj1 and mj2 are the mean values for the expression of the jth gene in the c1 and the c2
replicates, respectively, and sj1 and sj2 are similarly and respectively the standard deviations.

123Differential Expression



This statistic measures how dissimilar the two groups of measurements are, and therefore
indicates the level of differential expression. This test follows a Student’s t-distribution with
v degrees of freedom, calculated by using Equation (9.6).

v =

s21
n1

+
s22
n2

2

s21
n1

2

n1−1
+

s22
n2

2

n2−1

9 6

The t-test assumes that the tested variables are normally distributed, which is the case for
log-transformed normalised gene microarray data (Tarca, Romero and Draghici, 2006)
as well as proteomic microarray data (Ting et al., 2009), but not the NGS data (Fang, Martin
and Wang, 2012).
This ordinary t-test has fundamental problems when expression datasets are considered,

due to the very small numbers of replicates that are usually available. These small n-values
render the standard deviation estimations unreliable as there is a considerable probability that
small standard deviations occur by chance and lead to large false discovery rates (FDR). In
order to overcome this, S-statistic (Tusher, Tibshirani and Chu, 2001) and moderated t-statistic
(Baldi and Long, 2001) were proposed.
S-statistic penalises the denominator of the t-statistic in order to compensate for low

variances (Tusher, Tibshirani and Chu, 2001), as shown in Equation (9.7),

S =
mj1−mj2

a +
s2j1
n1

−
s2j2
n2

9 7

where a is the penalty parameter. Efron and colleagues suggested using the 90th percentile of
the standard errors (s2 n) of all genes as an estimation for the value of a (Efron et al., 2000).
The moderated t-statistic, proposed by Baldi and Long, is a t-statistic which considers a

moderated standard deviation that adopts an empirically derived penalty for low variances
(Baldi and Long, 2001). The estimated moderated standard deviation s is calculated based
on the formula given in Equation (9.8),

s=
v0σ20 + n−1 s2

v0 + n−2
9 8

where s is the well known standard deviation, v0 is the number of the additional pseudo obser-
vations with which the empirical variance is modulated, and σ0 is the background standard
deviation associated with the pseudo observations. The standard deviation of the entire set
of observations can be an estimation for the background standard deviation σ0. As for the
number of pseudo observations v0, it can be set by following the rule of thumb suggested
by Baldi and Long that v0 + n would always be equal to a number K, where K is a sufficient
number of observations for standard deviation estimation. For example, K can be set to 10 and
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consequently v0 = 10−n (Baldi and Long, 2001). The webserver Cyber-T, which is an online
tool that calculates moderated t-statistic, sets v0 to 5 unless otherwise specified by the user
(Kayala and Baldi, 2012). The degrees of freedom in this case are equal to v0 + n .
If the number of samples n is big, the moderated standard deviation s approaches the

ordinary standard deviation s because the moderation would not be needed. Moreover, the
moderated standard deviation lifts the very low ordinary standard deviations s while maintain-
ing a linear relation with large s-values. Those two facts are demonstrated in Figure 9.3a and b,
respectively.
After finding the t-statistic, the two-tailed p-value is calculated as the probability of obtaining

such a t-statistic or larger in absolute value by chance, and is equal to twice the value of the
t-cumulative distribution function (CDF) at the negative of the absolute value of the measured
t-statistic.
The t-statistic can only be applied to compare two groups of observations. ANOVA statistics

generalise the t-test by allowing for comparisons between several groups. Similar to the t-test,
the null-hypothesis in ANOVA is that the mean values of the observations in the several groups
are equal, while the research (alternative) hypothesis is that they are differentially expressed.

9.4.2 B-Statistic

Another way to overcome the drawback of the ordinary t-statistic at low variances is Bayes log
posterior odds B-statistic proposed by Lönnstedt and Speed (2002). Given the log ratio Mg for
the gene g, the B-statistic (Bg) is equal to the logarithm of the ratio between the probability that
the gene’s log-ratio belongs to a normal distribution with a non-zero mean (differentially
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Figure 9.3 Comparison between the moderated standard deviation s and the ordinary standard
deviation s. Calculations are based on Equation (9.8) with v0 = 5 and σ0 = 1; (a) as the number of
replicates (n) increases from one to 500, s approaches s; this is true for all of the five different
considered s-values 0.1, 1, 2, 5 and 10; (b) moderation mainly boosts the very small s-values in a
nonlinear manner while linearly decreasing the large s-values. For larger n-values, the moderation is
less influential at both high and low s-values as the transformation curves become closer to the
identity curve s = s; this is because the ordinary standard deviation (s) is expected to be more
representative and reliable when estimated by using a large number of observations (n)
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expressed) and the probability that the gene’s log-ratio belongs to a normal distribution with a
zero mean (not differentially expressed). This is formulated as shown in Equation (9.9),

Bg = log
Pr Ig = 1 Mg

Pr Ig = 0 Mg
9 9

where Mg N μg, σ
2
g and Ig is a binary value which is equal to unity when μg 0 and is

equal to zero when μg = 0. After derivation, the value of Bg can be calculated by using
Equation (9.10),

Bg = log
p

1−p
1

1 + nc

a + s2g +M
2
g

a + s2g +
M2

g

1 + nc

v+ n
2

9 10

where n is the number of replicates/observations, s2g is the variance of the observations of the
gene g, p is the proportion of differentially expressed genes in the experiment, a is a parameter
which compensates for small variances, v is the degrees of freedom for an inverse gamma prior
distribution for the variances, and c is a hyperparameter in the normal prior of the non-zero
means μg Ig = 1 . Estimation of those parameters was discussed by Lönnstedt and Speed
(2002); p can be feasibly fixed to a sensible value like 0.01 or 0.001, v and a can be estimated

based on the inverse gamma distribution of the variances such that
na

2σ2i
Γ v,1 for all i, and

c can be estimated based on comparisons between the observed normal density of the averages
{Mg} for the top p proportion of genes, and the observed normal density of the averages {Mg}
for all of the genes (Lönnstedt and Speed, 2002).
The R language package limma of the R Bioconductor project estimates those parameters by

the function eBayes and finds the B-statistic consequently by the function topTable.

9.4.3 Fisher’s Exact Test

This test was introduced by the English statistician Sir Ronald Aylmer Fisher in the 1920s
(Fisher, 1922). The test suites two-class NGS data with one sample for each class, as it is based

on the assumption that the data are discrete with Poisson sampling. Let x 1
j and x 2

j be the
expression values (counts of aligned short sequences) of the jth gene in the samples 1 and 2
which represent conditions 1 and 2 respectively, and let the sequencing depth of the kth sample

(k 1, 2 ), which is that sample’s total number of short sequences, be L k =
i
x k
j . A 2 × 2

contingency matrix can be drawn from this as shown in Table 9.1.

Table 9.1 Contingency matrix for Fisher’s exact test over the jth gene

Gene j Not gene j

Class/condition 1 x 1
j L 1 −x 1

j

Class/condition 2 x 2
j L 2 −x 2

j
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The counts in this two-class problem are assumed to follow a hypergeometric distribution.
Here, the complete set of sequences from all genes in both classes contains (L 1 + L 2 ) short
sequences, where L(1) of which belong to class 1. The short sequences that are aligned to the

gene ( j) represent a subset of that complete set with the size of (x 1
j + x 2

j ). Given that, and as
graphically demonstrated in Figure 9.4, the hypergeometric probability distribution function
(pdf), formulated in Equation (9.11), calculates the chance (probability) of obtaining xj

(1) short

sequences that belong to class 1 in a subset of (x 1
j + x 2

j ) short sequences that were uniformly
randomly drawn from the entire pool.

Prhypergeometric X = x 1
j =

L 1

x 1
j

L 2

x 2
j

L 1 + L 2

x 1
j + x 2

j

9 11

The hypergeometric p-value is therefore the probability of observing, by chance, such an
expression value or a value which is more favourable by the research (alternative) hypothesis
of differential expression. If the alternative hypothesis is that this gene is differentially
expressed such that it has significantly higher expression in class/condition 1 compared with
class/condition 2, the p-value will be as shown in Equation (9.12).

pgreater =Prhypergeometric X ≥ x 1
j =

min L 1 ,

x 1
j + x 2

j

x= x 1
j

L 1

x

L 2

x 1
j + x 2

j −x

L 1 + L 2

x 1
j + x 2

j

9 12

Class 1
short sequences
(L(1))

All short sequences
(L(1)+ L(2))

Drawing a
subset of short
sequences

Gene ( j) sequences
in class 1 (xj

(1))

All gene ( j) sequences
(xj
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Figure 9.4 Venn diagram demonstration for the hypergeometric modelling of the genetic expression
(short sequences’ count) of the gene ( j)

127Differential Expression



On the other hand, if the alternative hypothesis is that it has significantly higher expression in
class/condition 2, the p-value will be as shown in Equation (9.13).

pless =Prhypergeometric X ≤ x 1
j =

x 1
j

x= 0

L 1

x

L 2

x 1
j + x 2

j −x

L 1 + L 2

x 1
j + x 2

j

9 13

Calculating the hypergeometric p-value avoids the biases that might be caused by direct fold
change calculations if the sequencing depth was different for different samples. For example, if

L 1 = 1000, L 2 = 5000, x 1
j = 10 and x 2

j = 50, the p-value testing the alternative hypothesis

that x 1
j is significantly lower than x 2

j is pless = 0 58, which is a very high value that definitely
leads to the rejection of the alternative hypothesis and to considering the gene as being not-
differentially expressed. In contrast, a plain fold change calculation shows that there is a
five-fold change in expression, and this would normally lead to considering the gene as being
differentially expressed. It is clear that this gene has lower expression in condition 1 (10 vs. 50)
because of the fact that the total number of sequences in condition 1’s samples is much smaller
(1000 vs. 5000). This bias is perfectly considered by the hypergeometric p-value. Another

example with a genuine five-fold change would be when L 1 = 1000, L 2 = 1000, x 1
j = 10

and x 2
j = 50; the p-value at this case is pless = 5 4 × 10−8, which is extremely small and indicates

that this gene is significantly differentially expressed.
Although this test has many positives, it fails if the assumption that the alignment of

short sequences togenes followsPoisson distribution fails,which is the casewhenbiological repli-
cates exist. This is because those replicates have high dependency, which violates the Poisson
model. Consequently, other tests should be used for such cases. If only technical replicates exist,
the counts from the replicates in each class canbe added to eachother to obtain total count values to
be used in the contingency table and the following analysis (Fang, Martin and Wang, 2012).

9.4.4 Likelihood Ratio Test

In this test, which is applied to NGS data, the genetic expression (short sequences’ count) for the

jth gene in the ith sample of the kth class/condition (m k
ji ) is modelled by using a Poisson distri-

bution Poi μ k
j = L k

i v k
j , where μ k

j is the mean of the distribution, L k
i is the sequencing

depth (total number of short sequences) in the ith sample of the kth class, and v k
j is the pro-

portion of short sequences in L k
i that are aligned to this gene. Accordingly, in a two-class prob-

lem (k 1, 2 ), the likelihood ratio test statistic (Λj) regarding the jth gene for the two-sided

alternative hypothesis (v 1
j > v 2

j OR v 1
j < v 2

j ) can be formulated as given in Equation (9.14).

Λj = −2
2

k = 1 i

m k
ji × log k i

m k
ji

i
m k

ji

i
L k
i

k i
L k
i

9 14
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The two-sided alternative hypothesis p-value is the right-tailed cumulative Chi-squared (χ2)
probability of the statistic shown in Equation (9.15),

pvaluetwo−sided = 1−
1

Γ 1
2

γ
1
2
,
Λj

2
9 15

where Γ(.) is the gamma function and γ(., .) is the incomplete gamma function. The p-value for

the one-sided alternative hypothesis (v 1
j > v 2

j is given by Equation (9.16).

pvalueone−sided =

1
2
pvaluetwo−sided,

i
m 1

ji

i
L 1
i

> i
m 2

ji

i
L 2
i

0 5 , otherwise

9 16

The likelihood ratio test remains valid for both technical and biological replicates as long as
the Poisson’s assumption holds true, that is, the mean of counts is similar to their standard devi-
ation. However, if over-dispersion occurs, that is, when the observed variance is greater than
the assumed variance, this test becomes invalid (Fang, Martin and Wang, 2012).

9.4.5 Methods for Over-dispersed Poisson Distribution

Many models were designed, by extensions of the Poisson distribution, to analyse differential
expression in NGS datasets with over-dispersion, that is, the datasets in which the observed
variance is larger than the expected variance based on the ordinary Poisson distribution
(expected variance = mean). This is usually the realistic case when biological replicates from
the same biological condition/class exist due to their unavoidable dependency (Fang, Martin
and Wang, 2012; Soneson and Delorenzi, 2013).
Methods targeting such data include a two-stage Poisson model, which first classifies the

genes into genes with or without over-dispersion, and secondly calculates the statistics for
the two groups of genes by using two different models which would be appropriate accordingly
(Auer and Doerge, 2011). Moreover, other methods targeting this problem include the R
language packages edgeR (Robinson, McCarthy and Smyth, 2010),DESeq (Anders and Huber,
2010), and baySeq (Hardcastle and Kelly, 2010), which consider an underlying negative
binomial distribution of the data. Additionally, the BBSeq R language package implements
a method based on beta-binomial distribution (Zhou, Xia and Wright, 2011).

9.5 Discussion and Summary

Those genes that show statistically significantly different levels of expression across certain
different biological conditions are known as differentially expressed under such conditions.
The same applies to proteins, glycans (carbohydrates), metabolites and any other biological
molecules or entities whose expression or abundance can be measured. It is known that only
a relatively small subset of biological molecules (e.g. genes) is involved in any single
biological process under investigation. Therefore, identifying differentially expressed genes
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(or proteins, glycans, etc.) can be considered as means for the identification of a list of can-
didate participants in such biological processes and conditions.
The most intuitive method to identify differentially expressed genes is fold change, in which

a gene which shows at least K-fold change (e.g. two-fold change) is considered differentially
expressed. However, most of the modern techniques consider statistical hypothesis testing,
where the null-hypothesis is that the gene belongs to the mainstream statistical distribution
of the data, that is, it is not differentially expressed, while the alternative hypothesis is that
the gene is differentially expressed.
Gene and protein microarray datasets contain continuous (analogue) expression values, and

tend to show lognormal distributions, and therefore tests based on the moderated t-statistic,

Table 9.2 Differential expression analysis software packages

Method Platform/Package Function

Adjusted p-value R
R/Bioconductor – limma

p.adjust
topTable

ANOVA MATLAB anova1
anova2
kruskalwallis
multcompare

ANOVA R aov
anova

baySeq R/baySeq
BBSeq R/BBSeq
B-statistic R/Bioconductor – limma eBayes

topTable
DESeq R/DESeq
edgeR R/edgeR
FDR for multiple hypotheses MATLAB mafdr
Fisher’s exact test MATLAB By the hypergeometric CDF:

hygecdf
Fisher’s exact test R fisher.test
Fold change R/Bioconductor – limma topTabe
Fold change MATLAB mavolcanoplot
Likelihood ratio test MATLAB lratiotest
Likelihood ratio test R/lmtest lrtest
MA scatter plot MATLAB mairplot
MA scatter plot R/Bioconductor – limma plotMA
Moderated t-test R/Bioconductor – limma topTable
q-value MATLAB mafdr
q-value MATLAB topTable
Student’s t-test MATLAB ttest

ttest2
mattest

Student’s t-test R t.test
Volcano plot MATLAB mavolcanoplot
Volcano plot R/Bioconductor – limma volcanoplot
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S-statistic and B-statistic can be applied to them. In contrast, NGS data are digital because they
represent integer counts of the short sequences found in a sample and aligned to the target gene
(or protein). Tests like Fisher’s exact test, and the maximum likelihood ratio test, can be applied
to such datasets while assuming that they belong to Poisson distribution. However, when over-
dispersion occurs, that is, when the observed variance of the data is larger than the expected
variance, assuming an ordinary Poisson distribution becomes inaccurate. Other methods were
proposed for such cases while assuming other distributions such as the negative binomial
distribution or the beta-binomial distribution.
Statistical tests usually provide a p-value for each object (e.g. gene), which represents the

probability that this object’s observed profile, or a profile more favourable by the alternative
hypothesis, is due to mere chance. For example, if the p-value of a gene’s differential expres-
sion is equal to 0.01, there is a 1% chance that the observed expression profile, or any more
differentially expressed profile, would occur by chance. Because multiple hypotheses are tested
simultaneously, for example the differential expression of each of thousands of genes in a
single dataset, the rate of false-positive discoveries would be high. Many methods were
proposed to adjust raw p-values to compensate for this fact, such as q-values and Bonferroni’s
and Holm’s adjusted p-values. Some software packages for differential expression analysis are
provided in Table 9.2.
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Part Four
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10
Clustering Forms

10.1 Introduction

In Part Three, we introduced biological data acquisition and pre-processing. In our pipeline of
processing and analysing these biological data, we reach the stage of clustering. The task of
clustering is to group data objects into a set of disjoint classes, called clusters, so that objects
within a class have high similarity to each other, while objects in separate classes are more
dissimilar. Before we dive deeply into clustering algorithms, in this chapter, we would like
to overview the world of clustering methods and briefly explain the common rationale behind
all clustering methods.
There is a very rich literature about clustering algorithms, which has been developed to solve

different clustering problems in specific fields for more than five decades. With the advent of
high-throughput data-collecting techniques in the biology and biomedicine fields, people have
to invoke the help of clustering algorithms against the dramatically increasing biological data
and to squeeze knowledge from a large amount of data.
Suppose that the biological data, whether gene expression data or protein-expression data,

DNA sequence data or protein sequence data, or others, is in a form of data matrix
X = xnm n= 1,…,N;m= 1,…,M , which is called a pattern matrix, with N rows representing
N objects (genes, proteins, metabolites, glycans, etc.) and M columns representing M features
(samples from different time points, tissues or species). Having this matrix, we can cluster it in
three ways: first, we can cluster it row-wise to group genes or proteins into clusters based on
how similar the patterns of their features are; second, we can cluster it column-wise to group
features into clusters based on how many genes or proteins behave similarly in these features;
and last, we can cluster it in both row-wise and column-wise manners to group those genes that
behave similarly in many, if not all, features together.
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Alternatively, the biological data can also be organised into a square matrix,
S= sij i, j= 1,…,N , which is called a similarity matrix or proximity matrix, where both
its rows and columns represent data objects and its entry, sij, represents the similarity or dis-
similarity between the ith object and the jth object. Apparently, this matrix is a symmetric one.
For the rest of this chapter, we start with proximity measures, which are fundamental elements
of clustering, then move to an overview of the world of clustering algorithms.

10.2 Proximity Measures

There are many different terms for proximity measurement; for example, similarity, dissimi-
larity, distance and correlation. Conceptually, they are the same thing in that higher similarity
or higher correlation means that two patterns are more similar (with less dissimilarity) or geo-
metrically closer (with less distance). So the next questions, naturally, are what kind of stan-
dards need to be used for measuring the distance or similarity and how to measure them
between two objects. Sometimes we also need to measure them between one object and one
cluster or between two clusters.
There are a number of distance metrics in the literature. They can be employed in different

applications based on their different features. Since the data can be quantitative or qualitative,
continuous or binary, nominal or ordinal, the distance metrics can be roughly classified into two
categories: (1) measuring distances of discrete feature objects, and (2) measuring distances of
continuous feature objects. Nevertheless, these distance metrics share some common properties
(Xu and Wunsch, 2005):

1. Symmetry: D xi,xj =D xj,xi or S xi,xj = S xj,xi for all xi, xj;
2. Positivity: D xi,xj ≥ 0 or 1 ≥ S xi,xj ≥ 0 for all xi, xj;
3. Triangle inequality: D xi,xj ≤D xi,xk +D xk,xj or S xi,xj S xj,xk ≤ S xi,xj +

S xj,xk S xi,xk for all xi, xj and xk;
4. Reflectivity: D xi,xj = 0 or S xi,xj = 1, if xi = xj

where D(xi, xj) and S(xi, xj) denote the dissimilarity and the similarity between xi and xj,
respectively.

10.2.1 Distance Metrics for Discrete Feature Objects

Let us suppose that the discrete value objects xn = xnm A and A is an alphabet
ai i= 1, ,b which can be binary {0, 1} ({false, true}), or any finite number letters alphabet,
say four-letter genetic code alphabet, and 20-letter proteinic code alphabet and so on.

10.2.1.1 Hamming Distance

Hamming distance between two discrete value objects with equal length is the number of posi-
tions at which the corresponding discrete values are different.
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Example 9.1: The hamming distance between binary data vectors ‘10110110101’ and
‘11001011001’ is 7 and the hamming distance between discrete data vectors
‘324321432331’ and ‘424221431331’ is 3. If we imagine that the latter example is to calculate
the hamming distance between two DNA sequences and {1, 2, 3, 4} is the labelling of four
nucleotides {A, T, G, C}, those two sequences are actually ‘GTCGTACGTGGA’ and
‘CTCTTACGAGGA’, respectively, and the hamming distance between them is 3.

10.2.1.2 Matching Coefficient

Let us define a matching vector that indicates how many positions of two data vectors with
equal length are the same. The entry of the matching vector is 1 if two elements at the same
position of two data vectors are same; otherwise, the entry is 0. Thus we may obtain the number
of 1’s,m1 and the number of 0’s,m0 in the matching vector. The matching coefficient is defined
as m1 m0 +m1 . Let us consider the cases in Example 9.1, the matching coefficient of the two
binary data vectors is 4 4 + 7 = 0 364; the matching coefficient of the two DNA sequences
is 9 9 + 3 = 0 75.

10.2.2 Distance Metrics for Continuous Feature Objects

We summarise the metrics for continuous feature objects in Table 10.1.
In MATLAB, there is a subroutine called pdist that can calculate all the metrics shown in the

table except jackknife correlation. In bioinformatics applications, Euclidean distance and
Pearson correlation are the two metrics with the greatest popularity (Scherf et al., 2000; Stein
et al., 2004;D’haeseleer, 2005).Mahalanobis distance is alsowidely used, especially in the family
of the model-based clustering, which we will detail in a later chapter.

10.3 Clustering Families

Different starting criteria may lead to different taxonomies of clustering algorithms. We con-
sider a widely agreed classification to group all important clustering algorithms within bioin-
formatic applications into eight families, namely partitional clustering, hierarchical clustering,
fuzzy clustering, neural network-based clustering, mixture model clustering, graph-based clus-
tering, consensus clustering and biclustering.

10.3.1 Partitional Clustering

Partitional clustering, literally, attempts to directly decompose the dataset into a set of disjoint
partitions based on a pre-specified optimisation criterion. This is a definition in a broad sense,
and in this definition, partitional clustering could cover many clustering families, such as self-
organising clustering, mixture model clustering and so on. But throughout this book, we restrict
it within the algorithms based on squared error minimisation criterion, also known as squared
error-based clustering (Xu and Wunsch, 2010). The best examples of this family are k-means
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and k-medoids, which is also known as partitioning around medoids (PAM). We will detail
partitional clustering and its applications in bioinformatics in Chapter 11.

10.3.2 Hierarchical Clustering

Different from partitional clustering, hierarchical clustering clusters the dataset with a hierar-
chical set of nested clusters which can be graphically presented as a tree structure. The tree
structure is called a dendrogram and the ultimate clustering results are obtained by cutting this
dendrogram. Hierarchical clustering can be further classified into divisive (top-down)
approaches and agglomerative (bottom-up) approaches. Furthermore, in each of these two
classes, there are many different algorithms, based on different divisive methods or linkage
methods. We will detail hierarchical clustering in Chapter 12.

Table 10.1 Summary of the dissimilarity and the similarity measures of continuous feature objects

Measures Formula Comments

Minkowski distance
Dij =

M

m = 1

xim−xjm
p

1
p Minkowski distance is a metric on Euclidean

space, and is also considered as a generalisation
of Euclidean distance, Manhattan distance and
Chebyshev distance

Euclidean distance
Dij =

M

m = 1

xim−xjm
2

1
2 Euclidean distance is a special case of Minkowski

distance at p= 2

Manhattan distance
Dij =

M

m = 1

xim−xjm
Manhattan distance is a special case ofMinkowski
distance at p= 1

Chebyshev distance Dij = max
1 ≤m ≤M

xim−xjm Chebyshev distance is a special case of
Minkowski distance at p +∞

Mahalanobis
distance

Dij = xi−xj Σ−1 xi−xj
Σ is the within-cluster covariance matrix

Pearson correlation Sij = 1 +Rij 2 Pearson correlation coefficient Rij does not have
the positivity property, since it ranges in [−1, 1].
Nevertheless, we can transform it to a range of
[0, 1] by Sij = 1+Rij 2, and the dissimilarity
can be Dij = 1−Sij

Jackknife
correlation?

Jij =min R 1
ij ,R 2

ij ,…,R M
ij

Sij = 1 + Jij 2

Jackknife correlation, after the well known jack-
knifing statistics, is robust to the single outlier.

R l
ij denotes the correlation between the ith

and jth data object with lth feature deleted
(Heyer, Kruglyak and Yooseph, 999)

Spearman’s rank
correlation

Same form as Pearson
correlation, but with
ranking orders

It does not require the Gaussian distribution
assumption

Cosine similarity Sij =
xi xj
xi xj

Cosine similarity is widely used in text mining and
information-retrieval applications
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10.3.3 Fuzzy Clustering

Fuzzy clustering is also one of the most popular clustering families in bioinformatics applica-
tions. The rationale behind this is that it relaxes the restriction of hard clustering by allowing
each data object to be associated with all clusters with a degree of membership, which means
that each data object can be assigned to multiple clusters rather than to only one. The concept of
a membership function derives from fuzzy logic; therefore, any clustering algorithm that
employs fuzzy membership belongs to this family; for example, fuzzy c-means (FCM, also
known as soft-k-means), fuzzy k-medoids, possibilistic c-means (PCM) and so on. We will
detail fuzzy clustering in Chapter 13.

10.3.4 Neural Network-based Clustering

Neural network-based clustering starts with a set of nodes (also called neurons) that are all the
same except for some parameters initialised randomly which make each node behave slightly
differently. Then these nodes learn from the data in a competitive fashion: active nodes
reinforce their neighbourhood within certain regions, while suppressing the activities of other
nodes. The typical examples are self-organising map (SOM), self-organising oscillator
networks (SOON), adaptive resonance theory (ART) and other algorithms in competitive learn-
ing. We will detail them in Chapter 14.

10.3.5 Mixture Model Clustering

Mixture model clustering is another important family of clustering, which has attracted more
and more attention recently. It is based on formulating a clustering kernel for each individual
component in terms of a sampling density p X θ , where θ is an unknown parameter set.
Compared with Euclidean distance-based algorithms, mixture model clustering provides mean-
ingful results in many cases where Euclidean distance-based algorithms fail, especially in time
series (time series gene expression) and categorical (DNA or protein sequence) datasets.
Mixture model clustering can be classified into two large groups, namely finite mixture models
(parametric models) and infinite mixture models (nonparametric models). We will detail the
algorithms within this family in Chapter 15.

10.3.6 Graph-based Clustering

Graph-based clustering, as a very useful clustering family, not only is able to do the same job
that other clusterings can do (e.g. the similarities or dissimilarities are calculated and organised
in a graphical form), but also is able to cluster the relational data even though other data are not
available, which is difficult to do with other clustering algorithms. Therefore, in studies of
molecular and cellular biology, the graph representation has been widely used in the analysis
of protein–protein interaction networks, gene regulatory networks and metabolic networks. We
will detail the algorithms within this family in Chapter 16.
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10.3.7 Consensus Clustering

To combine different clustering results, also known as ensemble clustering, consensus cluster-
ing or cluster aggregation has received a lot of attention and is considered as a solution to the
problem of inconsistency of stochastic clustering algorithms or clusterings with different para-
meters. Ensemble clustering formalises the idea that combining different clusterings into a sin-
gle representative or consensus would emphasise the common organisation in the different
clustering results. Ensemble clustering has attracted a lot of interest during the past decade.
We will detail the algorithms within this family in Chapter 17.

10.3.8 Biclustering

The concept of simultaneously clustering dataset in both dimensions can be traced back to
1972, and it did not attract much attention until (Cheng and Church, 2000) developed a biclus-
tering algorithm to analyse gene expression data. In Chapter 18 we will discuss the basic
concept of biclustering and introduce the types of bicluster.

10.4 Clusters and Partitions

Clusters and partitions are the products of clustering algorithms. In this section, we introduce
many formations of the clustering products. The first one is in the form of an index vector, which
is defined as Z= zn n= 1,…,N called a partition and zn 1,…,K , where K is the number of
clusters. The second form is a partition matrix UN ×K = uk,n k = 1,…,K; n = 1,…,N . In the
crisp partitions, the nth object belongs to the kth cluster if the binary entry uk,n of the partition
matrix is 1, otherwise the object does not; while in fuzzy partitions, the entry uk,n 0,1 repre-
sents the degree to which the nth object belongs to the kth cluster. Lastly, partitions can be
represented as a cluster set C = C1,…,CK , where Ck denotes the kth cluster and

k = 1,…,K. The number of memberships in the kth cluster is nk, and
K

k = 1
nk =N.

10.5 Discussion and Summary

In this chapter, we have introduced distance metrics for discrete features and continuous
features. Hamming distance and matching coefficient are the most popular discrete data
distance metrics. Continuous data distance metrics are listed in Table 10.1. The choice of
the distance metric is critical to the final clustering results since different distance metrics
may lead to different clustering results. Therefore, the distance metric has to be chosen to
represent the characteristics of the data as much as possible. Then, we briefly introduced
the eight clustering families, namely partitional clustering, hierarchical clustering, fuzzy
clustering, neural network-based clustering, mixture model clustering, graph-based clustering,
consensus clustering and biclustering. These clustering algorithms have been extensively used
in the analysis of molecular biology, genetics, genomics and proteomics data. We also defined
symbols to represent clusters and partitions, which may be frequently used in the forthcoming
chapters. Now, we will start our journey to the technical world of clustering.
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11
Partitional Clustering

11.1 Introduction

The problem of partitional clustering can be stated as follows. Given a dataset with N data
objects in an M-dimensional feature space, the task of partitional clustering is to determine
a partition of K groups or clusters, such that the data objects in a cluster are more similar to each

other than to data objects in other clusters. In theory, there are 1 K
K

i = 1
−1 K− i K

i
iN

possibilities to group N data objects into K clusters (Jain and Dubes, 1988). Therefore, exhaus-
tive enumeration of all possibilities is not computationally feasible. On the other hand, the
definition is in its broadest sense. With this definition, partitional clustering could cover many
clustering families, such as neural network-based clustering, mixture model clustering and so
on, in terms of different clustering criteria. A clustering criterion has to be adopted. In this
chapter, we restrict the criterion of partitional clustering to be squared-error.
The best examples of this family are k-means and k-medoids (also known as partition around

medoids (PAM)). As one of those oldest clustering algorithms that we can trace back to the
fifties of the last century (Steinhaus, 1956; MacQueen, 1967), k-means was designed for
similarity grouping and relevant clustering. In communication and signal-processing fields,
similar algorithms were developed for data compression, for example vector quantisation
(VQ) algorithm and Lloyd algorithm (Linde, Buzo and Gray, 1980; Lloyd, 1982). The
k-medoids algorithm was proposed by (Kaufman and Rousseeuw, 1987, 1990).
With the advent of high-throughput data-collecting techniques in the molecular

biology fields, for example, microarrays, DNA sequencing and RNA sequencing, k-means
and k-medoids have been widely used in bioinformatics applications. Herwig and colleagues
developed a clustering procedure based on a modified k-means, called sequential k-means, to
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analyse high-throughput cDNA fingerprinting data (Herwig et al., 1999). Tavazoie and
colleagues employed k-means as the clustering tool to analyse microarray gene expression data
for Saccharomyces cerevisiae (budding yeast) (Tavazoie et al., 1999). In their studies of the
chromatin signatures of promoters and enhancers, Heintzman and colleagues used k-means
as one of computational methods in the processing pipeline (Heintzman et al., 2007, 2009).
Pollard and van de Laan analysed microarray gene expression data using k-medoids because
of its better ability against outliers (Pollard and van de Laan, 2002). Harbison and colleagues
developed a computational method to discover the transcriptional regulator binding sites,
where k-medoids was used to cluster the significant motifs of transcriptional regulators
(Harbison et al., 2004). Cheung and colleagues employed k-medoids in the cluster analysis
of DNA copy-number data, as a part of their genome-wide profiling of follicular lymphoma
(FL), which revealed regional copy-number imbalances and identified prognostic correlates
in relation to both survival and transformation risk (Cheung et al., 2009). Recently, both
k-means and k-medoids were employed by Elsheikh and colleagues in a breast cancer study
to identify the presence of variants in global levels of histone markers in different classes of
invasive breast cancer (Elsheikh et al., 2009).
There have also been many extensions and variations based on the original k-means and

k-medoids algorithms, for example fuzzy c-means and fuzzy k-medoids (will be detailed in
Chapter 13), kernel k-means (Zhang and Rudnicky, 2002; Yu et al., 2012), genetic k-means
(Krishna and Murty, 1999; Lu et al., 2004) and genetic k-medoids (Sheng and Liu, 2006),
spherical k-means (Dhillon and Modha, 2001; Hornik et al., 2012) and spherical k-medoids
(Dikmen, Hoiem and Huang, 2012), and so on. In the rest of this chapter, we will detail the
principles of k-means and k-medoids, their variations and their applications.

11.2 k-Means and its Applications

11.2.1 Principles

The k-means algorithm is the most common partitional clustering algorithm. The basic idea is to
obtain the partition that minimises the squared-error for a given number of clusters, K. The
squared-error is also known as within-cluster variation. Suppose that the given partition is
formed in a cluster set C= C1,…,CK for a dataset with N data objects, as we introduced
in the last chapter. We define the centroid, ck, of the kth cluster Ck as the mean vector of
the members in Ck, which is written as shown in Equation (11.1).

ck =
1
nk xn Ck

xn 11 1

Thus, the squared-error, or within-cluster variation, of the kth cluster is the sum of the squared
Euclidean distances between all members in Ck and the centroid ck, mathematically written as
Equation (11.2),

Ek =
xn Ck

xn−ck
T xn−ck 11 2
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where T is the transpose operator. The total squared-error for the whole partition is the sum of
within-cluster variations of K clusters, which is given by Equation (11.3).

E =
K

k = 1

Ek 11 3

The squared-error clustering criterion is to find the optimal partition by minimising the total
squared-error, E. The optimisation problem to find the optimal partition minimising the total
squared-error is a non-deterministic polynomial-time hard (NP-hard) problem. According to
their experimental results, the random and KA methods work much better than the Forgy
and MacQueen methods.
The k-means algorithm, as a heuristic algorithm, is computationally efficient and converges

quickly. The basic procedure of the k-means is given in Table 11.1. In Step 1, the random initi-
alisation partitions the dataset at random; deterministic initialisation calculates the representa-
tive objects subsequently in a deterministic way. There have been many methods to randomly
initialise k-means. The first one, which is also the most usual one, is to generate the partition
randomly and update the centroids accordingly; the second one, which was developed by
(Forgy, 1965), is to select K data objects randomly as the centroids and assign the rest of data
objects to the cluster represented by the nearest centroid; the last one, which was proposed by
(MacQueen, 1967), is to select K data objects randomly, assign the rest of the objects to the
cluster with the nearest centroid following the data-object order, and update the centroid after
each assignment. The Kaufman approach (KA) is a deterministic initialisation method, which is
summarised in (Kaufman and Rousseeuw, 1990). Peña, Lozano, and Larrañaga compared the
abovementioned four classical initial partition methods based on effectiveness, robustness and
convergence speed (Peña, Lozano and Larranaga, 1999) (Table 11.2). According to their exper-
imental results, the random and KA methods work much better than the Forgy and MacQueen
methods.

Table 11.1 The basic procedure of k-means

Step 1 Initialise K clusters either randomly or deterministically;
Step 2 Assign each data object to its nearest cluster Ck, where k = arg mink xn−ck ;
Step 3 Update the centroid of each changed cluster, ck = 1 nk xn Ck

xn;

Step 4 Repeat Steps 2 and 3 until there is no change in any cluster.

Table 11.2 The Kaufman approach (KA)

Step 1 Select the most centrally located data object as the first centroid;
Step 2 FOR every unselected data object xi DO

Step 2.1 FOR every unselected data object xj DO calculate βji =max Dj−dij,0 , where

dij = xi−xj and Dj = mins dsj, where s represents one of selected representatives;

Step 2.2 Calculate the gain of selecting xj by j
βji;

Step 3 Select the unselected data object maximising
j
βji as the new centroid;

Step 4 IF there are K selected representatives, THEN stop ELSE go to Step 2.
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Mathematically speaking, the second step of the k-means algorithm partitions the observa-
tions according to the Voronoi diagram. The input space is divided into Voronoi cells
corresponding to a set of prototype vectors, which is illustrated in Figure 11.1. Each data object
in a certain Voronoi cell is closer to its centroid than any other centroids. The computational
complexity of k-means is of the order of NMKT , where T is the number of iterations. The
value of T depends on the initial cluster centres, distribution of patterns and the size of the
clustering problem. However, in practice, an upper limit of T can be specified. The k-means
method works well for many practical problems, particularly when the resulting clusters are
compact and hyper-spherical in shape. Many platforms have k-means implemented, for
example, the routine kmeans in the Statistics Toolbox of MATLAB (MathWorks, 2013),
the routine kmeans in Package ‘stats’ of R (R-Core-Team, 2013), and SimpleKMeans class
in weka java package (Witten et al., 1999).

Example 11.1: Givena two-dimensional datasetwith 20objects labelledby lettersA—U(exclud-
ing letter O), the procedure of k-means clustering is illustrated in Figure 11.2. Suppose that the
number of clusters is known to be two, the k-means algorithm is initialised by randomly assign-
ing objects into two clusters. Thus the centroids of two clusters can be obtained, as depicted
with solid shapes in Figure 11.2a. Subsequently, the objects are re-assigned to the two clusters
in terms of the distances between them and two centroids, and the centroids of changed clusters
are updated, which is illustrated in Figure 11.2b. The iteration will continue until there is no
change in any cluster.

11.2.2 Variations

11.2.2.1 Kernel k-means

Kernel k-means is an extension of standard k-means by nonlinearly mapping data objects to a
higher-dimensional feature space. Thus, it has the ability to discover clusters that are not lin-
early separable in the original space. Usually the extension from k-means to kernel k-means is

Figure 11.1 Illustration of Voronoi diagram in two-dimensional space. The space is partitioned into
10 Voronoi cells
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simply realised by expressing the distance in the form of kernel function which is expressed as
shown in Equation (11.4),

κ xi,xj =Φ xi
TΦ xj 11 4

whereΦ is the nonlinear mapping function, which sometimes is not infeasible. Some popular
kernel functions are listed in Table 11.3. Thus, a straightforward way to transform the calcu-
lation of Euclidean distance in the feature space into the kernel version is to use the kernel trick
(Girolami, 2002) as in Equation (11.5),

Dκ
E xi,xj = Φ xi −Φ xj

2
= Φ xi

2 + Φ xi
2−2Φ xi

TΦ xj

= κ xi,xi + κ xj,xj −2κ xi,xj = 2−2κ xi,xj 11 5

and the kernel version of the modified Pearson correlation is given by Equation (11.6).
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Figure 11.2 Two-dimensional example with 20 objects using k-means. (a) 20 objects are randomly
assigned into 2 clusters, where the symbol square represents cluster 1 and the symbol circle represents
cluster 2. Solid symbols represent the centroids. (b) Clustering results using k-means

Table 11.3 Examples of popular kernel functions

Gaussian kernel
(also referred as Radial basis function) κ xi,xj = e−

xi −xj
2

2σ2 , σ > 0

Polynomial kernel κ xi,xj = αxTi xj + 1
d
, α R,d N

Sigmoid kernel κ xi,xj = tanh cxTi xj + θ

Exponential kernel κ xi,xj = e−
xi −xj
2σ2 , σ > 0

Laplacian kernel κ xi,xj = e−
xi −xj
σ , σ > 0
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SκE xi,xj =
Φ xi

TΦ xj

Φ xi
2 Φ xj

2
= κ xi,xj 11 6

The core part of kernel k-means is to calculate the Euclidean distance between the objects and
the centroids of the clusters in the feature space, which is written as given in Equation (11.7).

Dκ
E xi,c

Φ
k = Φ xi −

1
Nk xn Ck

Φ xn

2

= κ xi,xi −
1
Nk xn Ck

κ xi,xn +
1

N2
k

xn Ck xl Ck

κ xl,xn 11 7

Then, the rest of the algorithm is the same process as the standard k-means. The main drawback
of this algorithm is the high clustering cost due to the repeated calculations of kernel values, or
insufficient memory to store the kernel matrix.

11.2.2.2 Spherical k-means

Spherical k-means was proposed by Dhillon and Modha (Dhillon and Modha, 2001) for
clustering of large sparse text data in text-mining applications. The algorithm employs the
cosine similarity as the distance measure and produces K disjoint clusters, each with a
concept vector that is the centroid of the cluster normalised to have unit Euclidean norm
and is mathematically written as shown in Equation (11.8).

ck =
ck
ck

11 8

The concept vector has a very important property: For any unit vector z RM , based on the
Cauchy–Schwarz inequality, we obtain Equation (11.9).

xn Ck

xTn ck ≥
xn Ck

xTn z 11 9

The concept vector, thus, is the closest vector in cosine similarity to all data objects in the
cluster Ck.
The problem turns out to be a maximisation problem of an objective function, and the

solution is the optimal partition, which is mathematically given by Equation (11.10).

Ck
K
k = 1 = arg max

Ck
K
k = 1

K

k = 1xn Ck

xTn ck 11 10

The solution of this optimisation problem is NP-hard. Spherical k-means is an approximation
algorithm using an effective and efficient iterative heuristic, which is summarised in
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Table 11.4. In package ‘skmeans’ of R, the routine skmeans is implemented for the spherical
k-means algorithm.

11.2.2.3 Genetic k-means

Genetic algorithm (GA), which was originally proposed in the 1970s (Holland, 1975), has been
used in clustering by employing either an expensive crossover operator to generate valid child
chromosomes from parent chromosomes or a costly fitness function or both. Krishna andMurty
proposed a hybrid clustering algorithm combining GA and the k-means method, called genetic
k-means algorithm (GKA) (Krishna andMurty, 1999). If we define a string swith length ofN as
the chromosome and each element of the chromosome is an allele from {1,…, K}, the search
space of the GKA is all possible chromosomes.
The core of GKA contains a selection operator, a mutation operator and a k-means operator.

It starts with a population of chromosomes, say L chromosomes, which are randomly gener-
ated. The selection operator selects the chromosomes based on their merits or fitness values to
survive in the next generation. The mutation operator changes allele values depending on the
distance of the cluster centroids from the corresponding data object. The k-means operator is
introduced to accelerate the convergence speed. After a certain number of generations, GKA
selects the string s∗ minimising the total within-cluster variations E in Equation (11.3) as the
output. The GKA is summarised in Table 11.5.
Lu and colleagues developed an incremental genetic k-means algorithm (IGKA) for gene

expression data analysis (Lu et al., 2004). Similarly as GKA, IGKA also has a selection oper-
ator, a mutation operator and a k-means operator. IGKA, however, calculates the total within-
cluster variations and cluster centroids incrementally, differently from GKA. In order to obtain
the new centroids and new total within-cluster variations, IGKA maintains the difference
values between the old solution and the new solution when the allele changes. However, if

Table 11.4 The basic procedure of spherical k-means

Step 1 Initialise K clusters with arbitrary partitioning of the data objects;
Step 2 Assign each data object to its nearest cluster Ck, where k = arg maxk x

T
n ck ;

Step 3 Update the centroid of each changed cluster, ck = 1 nk xn Ck
xn and ck = ck ck ;

Step 4 Repeat Steps 2 and 3 until there is no change in any cluster.

Table 11.5 Summary of genetic k-means

Step 1 Initialise the algorithm: population size Np; mutation probability p; maximum number
of generation MAX_GEN; the population P; s∗ =P 0 ;

Step 2 FOR i = 1, , MAX_GEN DO
Step 2.1 Calculate Fitness values of strings in P;

Step 2.2 P= Selection(P);

Step 2.3 FOR n= 1, ,Np DO Pn = Mutation (Pn)
Step 2.4 FOR n = 1, ,Np DO K-Means (Pn)
Step 2.5 IF Es∗ >Es THEN s∗ = s, where s P

Step 3 Output s∗
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the mutation probability is large, too many alleles change their cluster membership, the main-
tenance of difference values becomes expensive, and IGKA becomes inferior to other GKA
algorithms in performance. GKA can be obtained by using the routine skmeans in package
‘skmeans’ of R, with parameter ‘method’ being set to ‘genetic’.

11.2.3 Applications

11.2.3.1 Case Study 1

Tavazoie and colleagues conducted a study to discover distinct expression patterns in the
Saccharomyces cerevisiaemicroarray mRNA dataset and then identify upstream DNA sequence
patterns specific to each expression cluster (Tavazoie et al., 1999). In this study, k-means was
employed as the clustering tool and K = 30 clusters were produced. Researchers found that
the members of many clusters are significantly enriched for genes with similar functions. They
mapped the genes in each cluster to the 199 functional categories in the Martinsried Institute of
Protein Sciences (MIPS) functional classification scheme database. To determine the statistical
significance for functional category enrichment, the hypergeometric distribution was used to
obtain the chance probability of observing similar or higher numbers of genes from a
particular MIPS function category within each cluster. The most notable cluster they found
was the one in which 64 out of 164 genes encode ribosome proteins and P-value is 10−54.

Next, Tavazoie and colleagues carried out a blind and systematic search for upstream DNA
sequence motifs that were common to members of each cluster. They found 18 motifs from
12 different clusters, where 7 had been experimentally identified. For the clusters whose mem-
bers belong to known regulons, the expected cis-regulatory element(s) emerged as the highest
scoring motif(s) in every case. Some newly discovered motifs, namely M14a, M14b, M3a and
M3b, are very likely to have roles in the global regulation of protein synthesis. It is worth noting
that both function category enrichment analysis and upstreammotifs discovery are based on the
clustering results by k-means.

11.2.3.2 Case Study 2

The human body is composed of diverse cell types with distinct functions and the lineage
specification depends on cell-specific gene expression, which is driven by many regulatory
elements, namely promoters, enhancers, insulators and other cis-regulatory DNA sequences.
Heintzman and colleagues carried out a study of the relative roles of these regulatory elements,
wherein they discovered that the chromatin signatures at promoters, CTCF (insulator-binding
protein, encoded by CTCF gene) occupancy and CTCF enrichment patterns are remarkably sim-
ilar across all cell types, while they observed that enhancers are marked with highly cell-type-
specific histone modification patterns, strongly correlate to cell-type-specific gene expression
programs on a global scale, and are functionally active in a cell-type-specific manner
(Heintzman et al., 2007, 2009). Over 55 000 potential transcriptional enhancers in the human
genome were defined, which significantly expands the current catalogue of human enhancers
and highlights the role of these elements in cell-type-specific gene expression. In this study,
k-means was used to cluster the chromatin modifications found ±5 kb from 414 promoters,
and cluster 1423 non-redundant enhancers predicted on the basis of chromatin signatures.
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11.3 k-Medoids and its Applications

11.3.1 Principles

The k-medoids algorithm, also known as PAM, is based on a similar strategy to k-means, that is,
searching for k representatives in the dataset. Differently from k-means, k-medoids looks for
k representative objects, which are called medoids, among all the objects, rather than their mean
values. k-Medoids is more robust to outliers than is k-means, because outliers may affect the
centroids but hardly affect medoids. The procedure of k-medoids is similar to that of k-means
shown in Table 11.1, except that in Step 3 it updates the medoid of each changed cluster.

Example 11.2: Considering the same dataset as the one in Example 11.1, we cluster the dataset
using k-medoids. The k-medoids algorithm randomly selects two objects as medoids, which, in
this case, are object H and object I, and assigns all other objects to two clusters in terms of the
distances between them and the medoids, as depicted in Figure 11.3a. Then the medoids are
updated in terms of the members in the same clusters, which turn out to be object C and object
N in our example, and all objects are re-assigned subsequently, as illustrated in Figure 11.3b.
The iteration will continue until there is no change in any cluster. The main difference between
k-means and k-medoids is that k-means uses centroids while k-medoids uses medoids.

11.3.2 Variations

11.3.2.1 Spherical k-medoids

Dikmen and colleagues proposed spherical k-medoids to define a vocabulary of image
patches (Dikmen, Hoiem and Huang, 2012). Spherical k-medoids employs cosine similarity
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Figure 11.3 Two-dimensional example with 20 objects using k-medoids. (a) Two medoids, which are
represented by the solid square and circle, were randomly selected, and then two clusters were initialised,
where the symbol square represents cluster 1 and the symbol circle represents cluster 2. (b) Clustering
results using k-medoids
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measurement, which is similar to spherical k-means. Differently from spherical k-means,
spherical k-medoids updates the medoid in every cluster by finding the object maximising
the pairwise similarities in each respective cluster.

11.3.2.2 Genetic k-medoids

Sheng and Liu proposed the genetic k-medoids algorithm, which is a hybrid GA for k-medoids
clustering (Sheng and Liu, 2006). Variable-length chromosomes that encode different numbers
of clusters were employed for evolution and a modified Davies–Bouldin (MDB) index
(see Chapter 20 for the detail of the DB index) was used as a measure of the fitness. In doing
so, first of all, the number of clusters in the population ranged from 2 to kmax and clustering was
initialised by randomly selecting medoids from the dataset. Genetic operators, including
selection operators, crossover operators and mutation operators, functioned generation by
generation for evolution. However these genetic operators took a long time to converge.
Therefore a heuristic operator was designed and integrated with the global search for k-medoids
clustering. This operator efficiently improved the fitness of the offspring by updating the
medoids encoded in them such that the total dissimilarity or distance within each cluster
represented by the medoid is minimised. Interestingly, for the genetic k-medoids method it
was claimed that there was no need to specify the exact number of clusters a priori. By using
variable-length chromosomes and the MDB-based fitness function, the genetic k-medoids can
converge to true number of clusters and a good partition.

11.3.3 Applications

11.3.3.1 Case Study 1

Harbison and colleagues conducted a study of yeast’s transcriptional regulatory code (Harbison
et al., 2004). In this study, the sequence elements that are bound by regulators under various
conditions were identified and an initial map of these transcriptional regulatory codes was
constructed. In doing so, first of all, the genomic occupancy of 203 DNA-binding transcrip-
tional regulators in rich media conditions was determined by using genome-wide location
analysis. To identify the cis-regulatory sequences that are likely to serve as recognition sites
for transcriptional regulatory, six motifs-discovery algorithms were employed and 68 279
DNA sequence motifs for the 147 regulators that bound more than ten probes were discovered.
The resulting specificity predictions were filtered for significance and 4259 motifs were left.
Significant motifs were clustered with the use of the k-medoids algorithm. Aligned motifs
within each cluster were averaged to produce consensus motifs and filtered according to their
conservation. This procedure typically produced several distinct consensus motifs for each
regulator.

11.3.3.2 Case Study 2

Approximately 85% of FL cases are associated with a specific balanced translocation t(14;18)
(q32;q21), that leads to over-expression of the anti-apoptotic gene BCL2.However, this genetic
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abnormality alone is unlikely to produce clinical FL, and t(14;18)-bearing lymphocytes have
been frequently demonstrated in healthy individuals. A number of large studies have been car-
ried out to investigate the chromosomal imbalances in FL by using a combination of techniques
including conventional karyotyping, comparative genomic hybridisation (CGH) and single
nucleotide polymorphism (SNP) technology. Cheung and colleagues conducted a study using
a combination of a high-resolution genomic analysis and a large FL cohort composed exclu-
sively of diagnostic biopsies (Cheung et al., 2009). In this study, whole-genome tiling-path
bacterial artificial chromosome (BAC)-array CGH, with a resolution of at least 200 kb for
detection of copy-number alterations in clinical specimens and a reported tolerance of up to
70% contamination by non-tumour cells, was applied to a cohort of 106 FL diagnostic speci-
mens with complete clinical information. Seventy-one regional alterations that were recurrent
in at least 10% of cases were identified. These altered regions ranged in size from 200 kb to 44Mb.
As a part of the study, 4912 BAC clones were extracted from the 71 regions of alterations and
k-medoids was applied to the 106 cases to find clusters using the Hamming distance metric.

11.4 Discussion and Summary

The definition of partitional clustering in the broadest sense may include many clustering
families, which partition datasets into groups in terms of different clustering criteria. We
restricted the criterion of partitional clustering to be squared-error. In this chapter, we discussed
the partitional clustering algorithms, essentially, k-means and k-medoids, as well as their
variations. All introduced algorithms and their publically accessible software are summarised
in Table 11.6. Furthermore, we discussed some real applications in bioinformatics using these
partitional clustering algorithms. Virtually, there are two main issues of k-means-type and k-
medoids-type clustering: the first is that the number of clusters, K, which is an essential param-
eter to the algorithms, is difficult to set a priori; the second is that the squared-error criterion
may not match the structure of some datasets, which may result in performance degradation.
Nonetheless, as one group of the most popular clustering algorithms, partitional clustering
algorithms, including k-means, k-medoids and their variations, have been widely used in cluster
analysis in the bioinformatics field because of their lower computational complexity.

Table 11.6 Summary of all partitional clustering algorithms introduced in this chapter

Algorithm Name Year Platform Package Function

k-means 1967 R/MATLAB/JAVA Statistics/stats/weka kmeans/kmeans/SimpleKMeans
k-medoids 1990 R cluster pam
Genetic k-means 1999 R skmeans skmeans(method = ‘genetic’)
Spherical k-means 2001 R skmeans skmeans
Kernel k-means 2002 R kernlab kkmeans
Spherical
k-medoids

2006

Genetic
k-medoids

2006
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12
Hierarchical Clustering

12.1 Introduction

Hierarchical clustering is one of most popular clustering methods in the literature. In contrast
to partitional clustering, which attempts to directly decompose the dataset into a set of
disjoint clusters, a hierarchical clustering method is a procedure for transforming a proximity
matrix into a nested partition, which can be graphically represented by a tree, called a
dendrogram. To obtain the number of clusters and the corresponding partition, we have
to cut the dendrogram at a certain level. Cutting it at different levels will lead to different
clustering results with different levels of resolution.
Hierarchical clustering algorithms are mainly classified into agglomerative methods

(bottom-up methods) and divisive methods (top-down methods), based on how the hierarchical
dendrogram is formed. Agglomerative methods start with N clusters initially (basically regard
each object as a cluster). Gradually, they merge the closest pair of clusters in terms of different
linkage methods until all the groups are merged into one cluster and a dendrogram is formed.
There are many linkage methods, namely single linkage, complete linkage, average linkage,
Ward’s linkage and others. Divisive algorithms are initialised with one cluster containing
all objects, and they then split the dataset step by step until only singleton clusters remain.
If all 2N−1−1 possible divisions into two sub-clusters of N objects considered at each step,
it is very expensive in computation. Therefore, divisive algorithms are not commonly used in
practice. There are two divisive algorithms, which will be discussed later, namely monothetic
analysis (MONA) and divisive analysis (DIANA).
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12.2 Principles

In this section,we overview the principles of hierarchical clustering in terms of hierarchy strategies,
that is bottom-up or top-down, which correspond to agglomerative methods or divisive methods.

12.2.1 Agglomerative Methods

Agglomerative methods are dominant in the hierarchical clustering family. Without further spec-
ification, the term ‘hierarchical clustering’ was often used to refer to agglomerative hierarchical
clustering. The general agglomerative hierarchical clustering is summarised in Table 12.1. It is
worth noting that in Step 2, every time when the merging occurs, the two merged clusters are
graphically connected by a link. Therefore, the outcome of the agglomeration is a dendrogram.
For example, we employ the data reported by Golub and colleagues (Golub et al., 1999), which
consist of 38 bone marrow samples obtained from acute leukaemia patients at time of diagnosis.
The samples include three groups: 11 acute myeloid leukaemia (AML) samples, 8 T-lineage
acute lymphoblastic leukaemia (ALL) samples and 19 B-lineage ALL samples. The cluster den-
drogram of the samples is shown in Figure 12.1. This example gives us an intuitive impression of
what the dendrogram looks like. In Step 3, there are many different definitions of the distance
between clusters, which lead to different clustering algorithms/linkage techniques algorithms,
namely single linkage, complete linkage, average linkage and Ward’s linkage. In the next sub-
sections, we introduce these linkage methods.

12.2.1.1 Single Linkage

Single linkage clustering is also known as shortest-distance linkage or nearest-neighbour
clustering. In Step 3 of Table 12.1, the distance between two clusters is represented by a single
pair of objects with the shortest distance. Mathematically, the linkage function – the distance
D(Ci, Cj) between clusters Ci and Cj – is described by Equation (12.1),

D Ci,Cj = min
xp Ci,xq Cj

d xp,xq 12 1

where Ci and Cj are any two sets of objects considered as clusters, and d(xp, xq) denotes the
distance between the two objects xp and xq. Single linkage often produces a skewed hierarchy
(called the chaining problem, where clusters formed via single-linkage clustering may be
forced together due to single elements being close to each other, even though many of the ele-
ments in each cluster may be very distant to each other) and is therefore not very useful for

Table 12.1 Specifications of all agglomerative hierarchical clustering methods

Step 1 Start with N clustering; basically, each object is a cluster; calculate the proximity matrix
for N clusters;

Step 2 Find minimum distance in the proximity matrix and merge the two clusters with the minimal
distance;

Step 3 Update the proximity matrix using the new distances between new cluster and other clusters;
Step 4 Repeat Steps 2 and 3 until all objects are in one cluster.
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summarising data. However, outlying objects are easily identified by this method, as they will
be the last to be merged.

12.2.1.2 Complete Linkage

Complete linkage is also known as farthest-neighbour clustering. In Step 3 of Table 12.1, the
distance between two clusters is represented by a single pair of objects with the longest dis-
tance. Mathematically, the distance function is given by Equation (12.2).

D Ci,Cj = max
xp Ci,xq Cj

d xp,xq 12 2

Complete-linkage clustering avoids a drawback of single-linkage clustering, that is, the
chaining problem. Complete linkage tends to find compact clusters of approximately equal dia-
meters. However, complete linkage tends to be less desirable when there is a considerable
amount of noise present in the data.

12.2.1.3 Average Linkage

There are two ways of defining average linkage. One is called weighted pair group method with
arithmetic mean (WPGMA) or McQuitty’s method, and the other one is called unweighted pair
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Figure 12.1 Cluster dendrogram of the leukaemia dataset reported by Golub and colleagues (1999),
which contains 38 bone marrow samples using average linkage: 11 acute myeloid leukaemia (AML)
samples, 8 T-lineage acute lymphoblastic leukaemia (ALL) samples and 19 B-lineage ALL samples
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group method with arithmetic mean (UPGMA) (Sneath and Sokal, 1973). The distance
between clusters in WPGMA is calculated as a simple average. For example, suppose we wish
to calculate the distance between Ci and Cj, where Cj is composed of Cm and Cn; the distance
function of WPGMA, therefore, is written as shown in Equation (12.3).

D Ci,Cj =
D Ci,Cm +D Ci,Cn

2
12 3

Though computationally easier, when there are unequal numbers of objects in the clusters
the distances in the original proximity matrix do not contribute equally to the intermediate
calculations.
UPGMA is a superior method, in which averages are weighted by the number of objects in

each cluster at each step such that every object is treated equally. Its distance function is written
as shown in Equation (12.4).

D Ci,Cj =
D Ci,Cm Cm +D Ci,Cn Cn

Cm + Cn
12 4

Note that Equation (12.4) implies an iterative implementation of UPGMA, and is equivalent
to the expression given in Equation (12.5).

D Ci,Cj =
1

Ci Cj xp Cixq Cj

d xp,xq 12 5

12.2.1.4 Centroid Linkage

In centroid linkage clustering, a centroid is assigned to each cluster, and this centroid is used to
compute the distances between the current cluster and all other clusters to update the original
proximity matrix. The vector is the average of the vectors of all actual objects contained within
the cluster. Thus, when a new cluster is formed by joining together two clusters, the new cluster
is assigned a centroid that is the average of all objects it contains, and not the average of the two
joined. Mathematically, the centroid is written as Equation (12.6).

ci =
1
Ci xp Ci

xp 12 6

Therefore, the distance between two centroids is simply given by Equation (12.7).

D Ci,Cj = d ci,cj 12 7

Centroid linkage is also called unweighted pair group method centroid (UPGMC) (Sneath
and Sokal, 1973).

12.2.1.5 Median Linkage

Median linkage is also called weighted pair group method centroid (WPGMC) (Sneath and
Sokal, 1973), where a weighted centroid is defined as in Equation (12.8),
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wj =
1
2
wm +wn 12 8

where wm and wn are weighted centroids of Cm and Cn respectively. Cluster Cj is composed of
clusters Cm and Cn. Thus the distance between two clusters is mathematically given by
Equation (12.9).

D Ci,Cj = d wi,wj 12 9

12.2.1.6 Ward’s Linkage

Ward’s linkage is also known as Ward’s minimum variance method, originally presented
by Ward (Ward, 1963). Ward’s linkage minimises the total within-cluster variance. To do
so, in Step 2 of Table 12.1, Ward’s linkage merges two clusters with minimum between-cluster
distance, that is, two clusters that lead to the minimum increase in total within-cluster
variance after merging. Therefore, the distance function between two clusters inWard’s linkage
is defined as within-cluster variance by considering them as one cluster. The within-cluster
variance is also called error sum of squares (ESS), mathematically written as shown in
Equation (12.10).

ESS =
xn C

xn−x 2 12 10

In general, this method is regarded as very efficient; however, it tends to create clusters of
small size.

12.2.1.7 Generalised Representation

All the hierarchical methods mentioned above can be implemented recursively by the
Lance–Williams algorithm (Cormack, 1971). Suppose that clusters (objects) Cm and Cn are
agglomerated into cluster Cj =Cm Cn. The Lance–Williams algorithm calculates the distance
between Ci and Cj recursively by means of Equation (12.11),

D Ci,Cj = αmD Ci,Cm + αnD Ci,Cn + βD Cm,Cn + γ D Ci,Cm −D Ci,Cn 12 11

where parameters αm, αn, β and γ define the agglomerative criterion, parameter αnwith index n
is defined identically to parameter αm with index m. The values of the parameters for several
linkage methods are given in Table 12.2.
Let us take an example of the single linkage method; using αm = αn = 1 2, β = 0 and γ = −1 2

gives the formula (12.12),

D Ci,Cj =
1
2
D Ci,Cm +

1
2
D Ci,Cn −

1
2
D Ci,Cm −D Ci,Cn 12 12

which can be also rewritten as D Ci,Cj =min D Ci,Cm ,D Ci,Cn , equivalent to
Equation (12.1).
The ‘method’ argument of function linkage in MATLAB determines the algorithm for

computing distance between clusters. The routine of agglomerative methods in MATLAB is
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function linkage. One of the input arguments is ‘method’, which defines the linkage method,
as shown in Table 12.3. The routine of agglomerative methods in R is hclust in ‘stats’ package.
The argument ‘method’, similarly to the function linkage in MATLAB, selects the linkage
method to be one of ‘ward’, ‘single’, ‘complete’, ‘average’, ‘mcquitty’, ‘median’ or ‘centroid’.

12.2.2 Divisive Methods

12.2.2.1 Divisive Analysis

DIANA splits up a cluster into two smaller ones, until finally all clusters contain only a single
element. We use an example to illustrate the DIANA algorithm. The data consist of six objects,
which are numbered in the form {1, 2, 3, 4, 5, 6} and its dissimilarity matrix is given by
Matrix 12.1.

Table 12.3 Specifications of all agglomerative hierarchical clustering methods

Method Description

Average Unweighted average distance (UPGMA)
Centroid Centroid distance (UPGMC), appropriate for Euclidean distances only
Complete Complete linkage/Furthest distance
Median Weighted centre of mass distance (WPGMC), appropriate for Euclidean distances only
Single Single linkage/Shortest distance
Ward’s Minimum variance algorithm, appropriate for Euclidean distances only
Weighted Weighted average distance (WPGMA)/McQuitty’s methods

Table 12.2 The general procedure of agglomerative hierarchical clustering

Linkage methods αm β γ

Single linkage
1
2

0
−
1
2

Complete linkage
1
2

0 1
2

Average linkage (UPGMA)
Cm

Cm + Cn

0 0

Average linkage (WPGMA)/McQuitty’s method
1
2

0 0

Centroid linkage (UPGMC)
Cm

Cm + Cn
−

Cm Cn

Cm + Cn
2

0

Median linkage (WPGMC)
1
2

−
1
4

0

Ward’s linkage
Cm + Ci

Cm + Cn + Ci
−

Ci

Cm + Cn + Ci

0
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1 2 3 4 5 6
1 0 0 2 0 6 0 1 0 9 0 10 0
2 2 0 0 0 10 0 2 0 8 0 9 0
3 6 0 10 0 0 0 7 0 3 0 4 0
4 1 0 2 0 7 0 0 0 10 0 9 0
5 9 0 8 0 3 0 10 0 0 0 3 0
6 10 0 9 0 4 0 9 0 3 0 0 0

Matrix 12 1

The DIANA algorithm starts with a single cluster, {1, 2, 3, 4, 5, 6}. In the first step, the data-
set has to be split into two clusters. Rather than considering all possible divisions, which is a
computationally demanding process and sometimes infeasible, DIANA finds the farthest object
away from other objects and forms a new cluster; then some others join the new cluster until a
kind of equilibrium is attained. In our example, calculating the average dissimilarity with other
objects, we find the sixth object is the one with the largest dissimilarity ((10.0 + 9.0 + 4.0 + 9.0
+ 3.0)/5 = 7). Thus the sixth object is chosen to initiate the so-called splinter group. Then for
each object in the larger cluster we calculate its average dissimilarity with the remaining
objects, and compare it with the average dissimilarity with the objects in the splinter group.
Therefore, the largest difference indicates the object that is likely to join the new cluster. In
our example, the fifth object is the one with the largest difference ((9.0 + 8.0 + 3.0 + 10.0)/
4− 3.0 = 4.5). We continue the process to find other objects to join the new cluster until there
is no positive difference. We find that the third object is the next one to join the new cluster
((6.0 + 10.0 + 7.0)/3 − (3.0 + 4.0)/2 = 4.17), and there are no more objects to join the new clus-
ter. The process stops and we have completed the first divisive step, which splits the data into
two clusters, {1, 2, 4} and {3, 5, 6}.
In the next step, we split the cluster with the largest diameter first. The diameter of a cluster is

defined as the largest dissimilarity between two of its objects. The dissimilarity matrices of
clusters {1, 2, 4} and {3, 5, 6} are shown respectively as Matrices 12.2 and 12.3.

1 2 4
1
2
4

0 0 2 0 1 0
2 0
1 0

0 0
2 0

2 0
0 0

and

3 5 6
3
5
6

0 0 3 0 4 0
3 0
4 0

0 0
3 0

3 0
0 0

Matrix 12 2 andMatrix 12 3

Obviously, cluster {3, 5, 6} has a larger diameter, which is 4.0. DIANA uses the same
method in the first step to split the cluster {3, 5, 6} and also other clusters step by step. The
algorithm stops when each object is assigned to a singleton cluster. The finial dendrogram
of our example is shown in Figure 12.2. The routine in R for DIANA is diana in package
‘cluster’.

12.2.2.2 Monothetic Analysis

MONA considers only binary variables, corresponding to the presence or absence of some
attributes. In MONA, each separation is carried out using a single variable, which is the reason
why it is called monothetic.Methods like DIANA, which use all variables simultaneously, are
called polythetic.
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Suppose that there is no missing value in the dataset. First of all, we consider a two-by-two
contingency table of two variables k and l as shown in Matrix 12.4.

k l 1 0
1
0

x b
c y

Matrix 12 4

Thus the association between variables k and l is defined as akl = xy−cb . The algorithm
constructs a clustering hierarchy, starting with one large cluster. At a separation step, it selects
one of the variables and divides the set of objects into two groups, one for which the selected
variable equals 0 and the other for which it equals 1. The variable used for splitting a cluster is
selected as follows. For each variable k, the association measures with all other variables are
added, giving the total association given by Equation (12.13).

Ak =
l k

akl 12 13

The variable used for splitting a cluster is argmaxkAk. However, if the same maximal value is
found for several variables, the variable is chosen as the one appearing first. The process is
continued until each cluster consists of objects having identical values for all variables. Such
clusters cannot be split any more. A final cluster is then a singleton or an indivisible cluster.

12.3 Discussion and Summary

Hierarchical clustering is one of most widely used clustering algorithms in the bioinformatics
field, because of the following three reasons: the first is that hierarchical clustering is easy to use
and there are very few parameters to set; the second is its low computational load; and the third
is that the results of clustering can be visualised in a dendrogram clearly.
Some pioneering works in gene expression analysis by (Eisen et al., 1998) and (Spellman

et al., 1998) employed hierarchical clustering and graphically represented the clustered dataset.
Since then, clustering has become one of the main exploratory tools in bioinformatics.

2 1 4 3 5 6

Figure 12.2 The dendrogram of a demonstration example for the DIANA algorithm. This example
contains six objects numbered in {1, 2, 3, 4, 5, 6}
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Perou and colleagues conducted a study of molecular portraits of human breast cancer tumours
(Perou et al., 2000). Gene expression patterns in 65 surgical specimens of human breast
tumours from 42 individuals, employing cDNA macroarrays representing 8102 genes, were
clustered using hierarchical clustering. This study concluded that the tumours could be
classified into subtypes distinguished by pervasive differences in their gene expression
patterns. Soon after, Sørlie and colleagues continued the study of classifying breast carcinomas
based on variations in gene expression patterns derived from cDNA microarrays, thereby
correlating tumour characteristics with clinical outcome (Sørlie et al., 2001). In this study,
hierarchical clustering was also employed to analyse a total of 85 cDNA microarray
experiments representing 78 cancerous, three fibroadenomas, and four normal breast tissues.
The light shed on subtype classification of breast carcinomas by these two studies made it clear
that there are four molecular ‘intrinsic’ subtypes of breast cancer, namely Luminal A, Luminal
B, HER2-enriched and Basal-like. As genomic studies evolve, further sub-classification of
breast tumours into newmolecular entities is expected to occur and a new breast cancer intrinsic
subtype, known as Claudin-low, has been identified in human tumours, again by using
hierarchical clustering (Herschkowitz et al., 2007).
Other examples include a series of studies of diffuse large B-cell lymphoma (DLBCL),

which is the most common subtype of non-Hodgkin’s lymphoma (Alizadeh et al., 2000; Shipp
et al., 2002; Monti et al., 2005), where hierarchical clustering was used effectively to discovery
subtypes of DLBCL. Furthermore, the applications of hierarchical clustering are not restricted
to microarray gene expression analysis. In protein-expression profile clustering analysis,
hierarchical clustering was also employed to diagnose ovarian carcinomas and borderline
tumours (Alaiya et al., 2002) and classify breast cancer subtypes (Abd et al., 2005). In the
Chapter 19, we will discuss more details about a number of applications of hierarchical
clustering in the bioinformatics field.
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13
Fuzzy Clustering

13.1 Introduction

We have introduced partitional clustering and hierarchical clustering in the preceding chapters.
All those clustering algorithms discussed the assignment of data objects into many non-
overlapping clusters and assigned each object to one and only one of these clusters. The clus-
tering algorithms which have this property are called ‘hard’ or ‘crisp’ clustering algorithms. As
mentioned in Chapter 10, hard clustering produces partition matrices with binary entries, that is,
one represents the presence of the object in the cluster; zero represents its absence. However,
hard clustering often does not always reflect the description of real data, where boundaries
between clusters might be fuzzy, and where a more nuanced description of the object’s affinity
to the specific cluster is required.
The term ‘fuzzy logic’ emerged with the development of fuzzy set theory by Zadeh (1965).

Since its advent, fuzzy logic has been applied to many fields, from control theory to pattern
recognition and artificial intelligence. The concept of using fuzzy sets in clustering was pro-
posed by Ruspini (1969, 1970). The convenience of fuzzy clustering over hard clustering
was discussed. Assigning each point a degree of ‘belongingness’ to each cluster provides a
way of characterising overlapping objects. Dunn developed fuzzy k-partition algorithms which
minimise certain fuzzy extensions of the k-means least-squared-error criterion function (Dunn,
1973, 1974). The investigations of Bezdek (1974, 1976; Bezdek and Dunn, 1975) showed that
fuzzy extensions of k-means are superior to ordinary k-means. A parameter m m >1 , which is
called the fuzzifier or weighting exponent, was introduced to generalise fuzzy k-partition algo-
rithms (Bezdek, 1976). Eventually, the generalised algorithmwas named fuzzy c-means (FCM)
(Bezdek, 1981). FCM and its variants have been widely used in various pattern-recognition
applications, particularly in biomedical engineering and bioinformatics (Gath and Geva,
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1989; Ahmed et al., 2002; Dougherty et al., 2002; Dembele and Kastner, 2003; Wang et al.,
2003; Zhang and Chen, 2004; Tari, Baral and Kim, 2009).
FCM uses the probabilistic constraint that the memberships of a data object across clusters

must sum to 1. This constraint came from generalising a crisp k-partition of a dataset, and was
used to generate the membership-update equations for an iterative algorithm based on the mini-
misation of a least-squares type of criterion function. The constraint on memberships used in
the FCM algorithm is meant to avoid the trivial solution of all memberships being equal to zero,
and it does give meaningful results in applications where it is appropriate to interpret member-
ships as probabilities or degrees of sharing. However, since the memberships generated by this
constraint are relative numbers, they are not suitable for applications in which the memberships
are supposed to represent ‘typicality’, or compatibility with an elastic constraint. Krishnapuram
and Keller proposed possibilistic c-means (PCM) algorithms to restrain the membership value
of an object in a cluster such that it represents the typicality of the object in the cluster, or the
possibility of the object belonging to the cluster, rather than a relative number (Krishnapuram
and Keller, 1993, 1996). Although the PCM algorithms were reported to provide coincident
clusters, very likely because no link exists between clusters, some light in respect of the pos-
sibilistic algorithms has been shed on fuzzy clustering, illuminating the fact that there are two
main types of membership; that is, a relative type, termed probabilistic, and an absolute or pos-
sibilistic type, indicating the strength of the attribution to any cluster independent from the rest.
Consequently, a number of fuzzy clustering algorithms have been proposed to improve both
FCM and PCM by combining them (Pal, Pal and Bezdek, 1997; Timm et al., 2004; Zhang and
Leung, 2004; Pal et al., 2005; Masulli and Rovetta, 2006).
There have also beenmany other fuzzy clustering algorithms in the literature, which combine

fuzzy logic with other clustering families; for example, fuzzy agglomerative hierarchical clus-
tering (FAHC) (Horng et al., 2005), fuzzy self-organising map (FSOM) (Tsao, Bezdek and Pal,
1994), fuzzy c-shell (FCS) (Dave, 1990, 1992; Klawonn, Kruse and Timm, 1997), and fuzzy
adaptive resonance theory (fuzzy ART) (Carpenter, Grossberg and Rosen, 1991). There have
also been many comprehensive review papers and books (Baraldi and Blonda, 1999a, 1999b;
de Oliveira and Pedrycz, 2007). In this chapter, we will detail some of the most popular fuzzy
clustering algorithms.

13.2 Principles

13.2.1 Fuzzy c-Means

FCMwas originally a fuzzy version of k-means, which assigns each object to one and only one
cluster; that is, FCM allows one object to belong to two or more clusters. FCM originated from
the fuzzy k-partitions and the fuzzy ISODATA algorithm (Dunn, 1973, 1974; Bezdek, 1974,
1976, 1981). FCM can also be considered as generalised squared-error partitional clustering.
Formally, a fuzzy cluster model of a given dataset X into K clusters is defined to be optimal
when it minimises the objective function given in Equation (13.1),

J X, U =
K

k = 1

N

n = 1

umknD xn, ck
2 13 1
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where the entry of the partition matrix U, ukn, represents the probabilistic membership degree
of the nth object in the kth cluster. The centroid ck is written as given in Equation (13.2).

ck =

N

n = 1
umknxn

N

n = 1
umkn

13 2

As mentioned in Chapter 11, in the k-means algorithm, the membership ukn is binary, that is,
ukn 0,1 . Therefore, k-means is also called hard or crisp c-means. In fuzzy clustering, the
probabilistic membership is relaxed to a real number in [0, 1], which is mathematically given
by Equation (13.3),

ukn =
1

K

l = 1

D xn, ck 2

D xn, cl 2

1
m−1

13 3

which implies a constraint that the probabilistic memberships satisfy
K

k = 1
ukn = 1. Such a con-

straint clearly shows the relative character of the probabilistic membership degree. It depends
not only on the distance of the object xn to cluster k, but also on the distances between this data
object to other clusters. The properties of the probabilistic membership degree ukn follow the
constraints given in Equation (13.4).

ukn 0,1 ;

0 <
N

n = 1

ukn <N;

K

k = 1

ukn = 1

13 4

It is worth noting that m, termed the fuzzifier, is any real number greater than 1.0. The fuzzifier
was proposed to be 2.0 originally to achieve the desired fuzzification of the resulting probabi-
listic data partition (Dunn, 1973). The generalisation of m to 1,∞ was proposed by Bezdek
(1976). With higher values for m the boundaries between clusters become softer; with lower
values they get harder. Usually m= 2 0 is chosen.
The implementation of FCM is similar to the iterations of k-means, and is shown in

Table 13.1. This iteration will stop when max
kn

u t + 1
kn −u t

kn < ϵ, where ϵ is a small positive

Table 13.1 The procedure of fuzzy c-means

Step 1 Initialise U 0 = u 0
kn k = 1, ,K; n= 1, ,N ;

Step 2 At the step t, with the partition matrix U(t), calculate the centroids ck k = 1, ,K using
Equation (13.2);

Step 3 Update the partition matrix U t + 1 using Equation (13.3);

Step 4 Repeat Steps 2 and 3 until max
kn

u t + 1
kn − u t

kn < ϵ.
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real number and t is the iteration index. There are many implementations of FCM in different
platforms: in Fuzzy Logic Toolbox of MATLAB, function fcm applies the FCM method; in
the package {e1071} in R, function cmeans also implements the FCM method.

13.2.2 Probabilistic c-Means

As discussed previously, FCM uses the probabilistic constraint that the memberships of a data
object across clusters must sum to 1. This constraint is meant to avoid the trivial solution of all
memberships being equal to 0. However, on the other hand, such constraint makes the member-
ships relative numbers. Although FCM has been shown to be advantageous to crisp clustering,
its relative character of the probabilistic membership degrees is not desirable, and sometimes
can be misleading. For example, it is not always the case that a fairly high value for the mem-
bership of an object in one cluster can lead to the impression that the object is typical for the
cluster. Therefore, they are not suitable for applications in which the memberships are supposed
to represent ‘typicality’, or compatibility with an elastic constraint.
Krishnapuram and Keller proposed PCM algorithms to restrain the clustering such that

the membership value of an object in a cluster represents the typicality of the object in the
cluster, that is, the possibility of the object belonging to the cluster, rather than a relative number
(Krishnapuram and Keller, 1993, 1996). The membership degree ukn of PCM is similar to that

shown in Equation (13.4) of FCM, except that the constraint
K

k = 1
ukn = 1 is replaced by

K

k = 1
ukn ≤ 1. After dropping this normalisation constraint, in order to avoid this trivial solu-

tion, a penalty term, which forces the membership degrees away from zero, is introduced into
the objective function. Mathematically the objective function is written as in Equation (13.5)
(Krishnapuram and Keller, 1996),

J X, U =
K

k = 1

N

n= 1

umknD xn, ck
2 +

K

k = 1

ηk

N

n = 1

1−ukn
m 13 5

where ηk > 0 and this cluster-specific constant is used to balance the contrary objectives expressed
in the two terms of the objective function. The first term leads to a minimisation of the weighted
distances, but it does not work when all memberships are zeros. The second term suppresses the
trivial solution because it penalises the zero memberships by making 1−ukn

m become one; in
the meantime, it rewards high memberships (close to 1) that make 1−ukn

m become approx-
imately 0. Therefore, updating the membership degrees that are derived from Equation (13.5)
by setting the derivative of J(X,U) to zero leads to Equation (13.6).

ukn =
1

1 + D xn, ck 2

ηk

1
m−1

13 6

Obviously, the membership degree of an object in a cluster clearly depends only on the distance
between the object and the cluster. The parameters, ηk k = 1,…,K, are crucial to the algorithm.
Depending on the cluster’s shape the parameters ηk have different geometrical interpretations.
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Mathematically, they are expressed as in Equation (13.7) (Krishnapuram and Keller, 1993),
where ηk can be either fixed or varied in each iteration.

ηk =

N

n= 1
umknD xn, ck

2

N

n= 1
umkn

13 7

However, the PCM algorithms were reported to provide coincident clusters, very likely because
no links exist between clusters (Barni, Cappellini and Mecocci, 1996). To address this issue,
Krishnapuram and Keller proposed an improved PCM algorithm (Krishnapuram and Keller,
1996). We call this algorithm PCM2 to differentiate it from the original PCM using hybrid
c-means. The objective function of PCM2 is given by Equation (13.8)

J X, U =
K

k = 1

N

n= 1

umknD xn, ck
2 +

K

k = 1

ηk

N

n = 1

ukn logukn−ukn 13 8

and then the update equation for ukn is written as in Equation (13.9).

ukn = exp −
D xn, ck

2

ηk
13 9

13.2.3 Hybrid c-Means

Although the PCM algorithm has a limitation of producing coincident clusters, it has shed its
light on fuzzy clustering, illuminating a fact that there are two main types of membership, that
is, a relative type, termed probabilistic, and an absolute or possibilistic type, indicating the
strength of the attribution to any cluster independent from the rest. To overcome the coinci-
dent-cluster problem of PCM there have beenmany attempts by using hybrid c-means methods,
essentially combining probabilistic and possibilistic c-means algorithms.
The first attempt was done by Pal and colleagues, and the algorithm is called fuzzy-

possibilistic c-means (FPCM), also known as the Pal–Pal–Bezdek algorithm (Pal, Pal and
Bezdek, 1997). FPCM simultaneously produces both probabilistic and possibilistic member-
ship (partition) matrices, for the sake of clarity, expressed by Uf and Up, respectively. Thus, it
leads to a mixed fuzzy-possibilistic c-means model, mathematically given by Equation (13.10),

JFPCM X,U f ,U p =
K

k = 1

N

n= 1

u f
kn

m
+ u p

kn

γ
D xn, ck

2 13 10

subject to the constrainsm>1, γ >1, 0 ≤ u f
kn ,u p

kn ≤1,
K

k = 1
u f
kn = 1, and

N

n = 1
u p
kn = 1. The last

constraint requires the normalisation over all objects in one cluster. To minimise the

mixed-objective function, the update equations for u f
kn and u p

kn are written as shown in
Equation (13.11),
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u f
kn =

K

j = 1

D xn, ck
D xn, cj

2
m−1

−1

, u p
kn =

N

j= 1

D xn, ck
D xj, ck

2
γ−1

−1

13 11

and the centroid ck is updated as given by Equation (13.12).

ck =

N

n = 1
u f
kn

m
+ u p

kn

γ
xn

N

n = 1
u f
kn

m
+ u p

kn

γ 13 12

Pal and colleagues further improved their FPCM algorithm by relaxing the constraint of
normalising the possibilistic memberships over all objects in one cluster (Pal et al., 2005).
The objective function of the improved FPCM is mathematically given by Equation (13.13),

J X,U f ,U p =
K

k = 1

N

n= 1

a u f
kn

m
+ b u p

kn

γ
D xn, ck

2 +
K

k = 1

ηk

N

n= 1

1−u p
kn

γ
13 13

subject to the constrains m >1, γ >1, 0 ≤ u f
kn ,u p

kn ≤1,
K

k = 1
u f
kn = 1, a> 0 and b > 0. The con-

stants a and b define the relative importance of fuzzy membership and typicality values in the

objective function. Therefore, the update equations for u f
kn and u p

kn in the improved objective
function are written as shown in Equation (13.14),

u f
kn =

K

j = 1

D xn, ck
D xn, cj

2
m−1

−1

,u p
kn =

1

1 + b D xn, ck 2

ηk

1
γ−1

13 14

and the centroid ck is updated as given by Equation (13.15).

ck =

N

n= 1
a u f

kn

m
+ b u p

kn

γ
xn

N

n = 1
a u f

kn

m
+ b u p

kn

γ 13 15

Zhang and Leung have also proposed two hybrid c-means algorithms using both probabilistic
and possibilistic membership degrees (Zhang and Leung, 2004). The two hybrid c-means algo-
rithms improve the objective functions Equations (13.5) and (13.8), proposed in Krishnapuram
and Keller (1993) and Krishnapuram and Keller (1996), respectively. For the sake of clarity,
the improved version of Equation (13.5) is called IPCM1, and the improved version of
Equation (13.8) is called IPCM2. The objective function of IPCM1 is mathematically
expressed as given in Equation (13.16).

JIPCM1 X,U f ,U p =
K

k = 1

N

n = 1

u f
kn

m
u p
kn

γ
D xn, ck

2 +
K

k = 1

ηk

N

n = 1

u f
kn

m
1−u p

kn

γ

13 16
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To minimise JIPCM1, the update equations for u
f

kn and u p
kn in the improved objective function

are written as shown in Equation (13.17),

u f
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K

j = 1

u p
kn

γ−1
2
D xn, ck

u p
jn

γ−1
2
D xn, cj

− 2
m−1

,u p
kn =

1

1 + D xn, ck 2

ηk

1
γ−1

13 17

and the centroid ck is updated as given by Equation (13.18).

ck =

N

n = 1
u f
kn

m
u p
kn

γ
xn

N

n= 1
u f
kn

m
u p
kn

γ 13 18

The scale parameter ηk is generalised in order to incorporate both the possibilistic memberships
and fuzzy memberships, as shown in Equation (13.19).

ηk =

N

n = 1
u f
kn

m
u p
kn

γ
D xn, ck

2

N

n = 1
u f
kn

m
u p
kn

γ 13 19

The objective function of IPCM2 is mathematically expressed as given in Equation (13.20)

JIPCM2 X,U f ,U p =
K

k = 1

N

n = 1

u f
kn

m
u p
kn D xn, ck
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+
K

k = 1

ηk

N
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kn

m
u p
kn logu p

kn −u p
kn + 1

13 20

To minimise JIPCM2, the update equations for u
f

kn and u p
kn in the improved objective function

are written as shown in Equation (13.21),

u f
kn =

K

j = 1

ηk 1−e−D xn, ck 2 ηk

ηj 1−e−D xn, cj
2
ηj

− 2
m−1

,u p
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D xn, ck 2

ηk 13 21

and the centroid ck is updated as given by Equation (13.22).
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n= 1
u f
kn

m
u p
kn xn
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n = 1
u f
kn

m
u p
kn

13 22
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13.2.4 Gustafson–Kessel Algorithm

Gustafson and Kessel developed a fuzzy clustering algorithm, which replaces the Euclidean
distance by the Mahalanobis distance, to consider cluster-specific geometrical shapes
(Gustafson and Kessel, 1978). The Gustafson–Kessel (GK) algorithm is designed for itera-
tively minimising the objective function, which is expressed as given in Equation (13.23),

JGK X, U, A =
K

k = 1

N

n= 1

umknD xn, ck,Ak
2 13 23

where the distance metric D(xn, ck, Ak) is the Mahalanobis distance, which is written as shown
in Equation (13.24),

D xn, ck,Ak = xn−ck
TAk xn−ck 13 24

where Ak is obtained by application of Equation (13.25),

Ak = ρk Σk
1 MΣ−1

k 13 25

where ρk = det Σk is the size of the cluster and Σk is the fuzzy covariance matrix of the kth
cluster, given by Equation (13.26).

Σk =

N

n= 1
umkn xn−ck xn−ck

T

N

n = 1
umkn

13 26

The rest of the GK algorithm is the same as that for FCM. The advantage of GK over FCM is
that its geometrical shape of the clusters is not restricted to a hyper-spherical shape like FCM.
However, the GK algorithm exhibits higher computational demands due to the matrix inver-
sions. Moreover, the GK algorithm may suffer from some numerical problems also because of
the matrix inversions.
In order to address these issues, Babuška and colleagues improved the GK algorithm to be an

adaptive clustering algorithm (Babuška, van der Veen and Kaymak, 2002). The improved GK
algorithm employs the new covariance matrix update as given in Equation (13.27),

Σk = 1−β Σk + βdet Σ0
1 nI 13 27

where I is an identity matrix with the dimension of M, and β 0,1 is a tuning parameter.

13.2.5 Gath–Geva Algorithm

The Gath–Geva (GG) algorithm is a fuzzy maximum-likelihood estimate clustering algorithm
proposed by Gath and Geva (1989). The GG algorithm employs the probability as distance
metric, expressed as shown in Equation (13.28),
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D xn, ck,Σk =
2π M 2 det Σk

1 2

αk
exp xn−ck

TΣ−1
k xn−ck 2 13 28

where αk = 1
N

N

n = 1

ukn. The update equations for ukn are written as Equation (13.29).

ukn =
1 D xn, ck,Σk
K

j= 1
1 D xn, cj,Σj

13 29

The fuzzy covariance matrix Σk is expressed identically as in Equation (13.26).

13.2.6 Fuzzy c-Shell

Up to now, all clustering algorithms, which we discussed above, search for solid interior clus-
ters. They are also called squared-error clustering algorithms, where the sum of weighted dis-
tances of the objects from the cluster prototypes is minimised. However, for characterisation
and detection of clusters with hollow interiors, the prototype definition has to be changed
(Dave, 1990, 1992). There have been a number of algorithms proposed to employ elliptical
surfaces as prototypes (Dave, 1990, 1992; Dave and Bhaswan, 1992; Frigui and Krishnapuram,
1996; Klawonn, Kruse and Timm, 1997). These elliptical surfaces are called shells, and these
algorithms are categorised as FCS algorithms (hard algorithms are viewed as special cases of
fuzzy algorithms). Here, we only sketch the main idea of FCS rather than all the details of FCS
and its variants.
First of all, the elliptical shell prototype is defined as given in Equation (13.30),

P c, A, r = x x−c TA x−c = r2 13 30

where r is the radius of the shell and A is anM ×M positive definite matrix. The distanceDkn of
the nth object xn from the kth prototype P(ck, Ak, rk) is given by Equation (13.31).

D2
kn = xn−ck

TAk xn−ck
1 2

−rk
2

13 31

Therefore, FCS is designed to minimise the objective function given by Equation (13.32).

JFCS =
K

k = 1

N

n= 1

umknD
2
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K

k = 1

ukn = 1 13 32

The update equation for ukm is written as Equation (13.33).

ukn =
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K

j= 1

D2
kn

D2
jn

1
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13 33
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The update equation for Ak is given by Equation (13.34),

Ak = ρk Σk
1 MΣ−1

k 13 34

where Equation (13.35) holds

Σk =
N

n = 1

umkn
D2

kn

d2kn
xn−ck xn−ck

T ,d2kn = xn−ck
TΣ−1

k xn−ck 13 35

13.2.7 FANNY

In fuzzy clustering, each object is assigned to various clusters and the degree of belongingness
of an object to different clusters is quantified by means of membership coefficients, which
range from 0 to 1, with the stipulation that the sum of their values is one. This is called a
fuzzification of the cluster configuration. It has the advantage that it does not force every object
into a specific cluster. It has the disadvantage that there is much more information to be
interpreted. Fuzzy analysis (FANNY) aims at the minimisation of the objective function shown
in Equation (13.36) (Kaufman and Rousseeuw, 1990),

JFANNY =
K

k = 1

N

i, j = 1u
2
iku

2
jkd i, j

2
N

j= 1
u2jk

13 36

where d(i, j) represents the distance between data objects i and j, uik is the unknown member-
ship of object i to the cluster k. The membership functions are subject to the following
constraints:

1. uik ≥ 0 for all i = 1,…,N and all k = 1,…,K;

2.
K

k = 1

uik = 1, for all i = 1,…,N.

These constraints imply that membership cannot be negative and that each object has a certain
total membership distributed over different clusters. By convention, this total membership is nor-
malised to 1. The objective function is minimised numerically bymeans of an iterative algorithm,
taking into account the above constraints. When each object has equal membership in all clusters,
the clustering is entirely fuzzy. On the other hand, when each object has a membership of one in
some cluster and zero membership in all other clusters; the clustering is entirely hard.

13.2.8 Other Fuzzy Clustering Algorithms

There are also some other fuzzy clustering algorithms in the clustering literature. For example,
fuzzy Kohonen clustering networks (FKCN), also known as FSOM, was proposed by Tsao,
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Bezdek and Pal (1994), because KCN (Kohonen clustering network) suffered from several
major problems. FKCN combined the ideas of fuzzy membership values for learning rates,
the parallelism of fuzzy c-means, and the structure and update rules of KCNs. Another example
is that Horng et al. proposed a FAHC algorithm for clustering documents (Horng et al., 2005).
Horng et al. constructed fuzzy logic rules based on the document clusters and the centres of
these document clusters. The constructed fuzzy logic rules were applied to modify the users’
query for query expansion and to guide the information-retrieval system to retrieve documents
relevant to the user’s request. The proposed document-retrieval method was implemented
based on FAHC.

13.3 Discussion

Fuzzy logic theory is one of most important computational theories in the twentieth century.
The concept of fuzzy logic and fuzzy set has been applied to many fields, from control theory to
artificial intelligence, then to bioinformatics. In this chapter, we introduced the basic principle
of fuzzy logic, together with fuzzy clustering algorithms, which applied fuzzy logic to perform
soft clustering. The fuzzy clustering algorithms, which we discussed, include fuzzy c-means
(Dunn, 1973, 1974; Bezdek, 1974, 1976, 1981), possibilistic c-means (Krishnapuram and
Keller, 1993, 1996), hybrid c-means (Krishnapuram and Keller, 1993, 1996; Pal, Pal and
Bezdek, 1997; Pal et al., 2005), the GK algorithm (Gustafson and Kessel, 1978; Babuška,
van der Veen and Kaymak, 2002), the GG algorithm (Gath and Geva, 1989), FCS (Dave,
1990, 1992; Dave and Bhaswan, 1992; Frigui and Krishnapuram, 1996; Klawonn, Kruse
and Timm, 1997), and FANNY (Kaufman and Rousseeuw, 1990). The algorithms whose
implementations are publicly available are listed in Table 13.2.
There are also many applications of fuzzy clustering in the bioinformatics field, for example

DNA motifs clustering (Pickert et al., 1998), microarray gene expression analysis (Datta and
Datta, 2003; Dembele and Kastner, 2003; Wang et al., 2003; Kim, Lee and Bae, 2006;
Bandyopadhyay, Mukhopadhyay and Maulik, 2007). We will discuss more details about some
applications in Chapter 19.
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14
Neural Network-based Clustering

14.1 Introduction

Clustering in the neural network literature is generally based on competitive learning (CL)
model, which originated in the early 1970s through contributions of Christoph von der
Malsburg (Malsburg, 1973). CL, virtually, is a neural network learning process where different
neurons or processing elements compete on who is allowed to learn to represent the current
input. In a CL model, a stream of input patterns to a network F1 can train the adaptive weights
that multiply the signals in the pathways from F1 to a coding level F2. Level F2 is designed as a
competitive network capable of choosing the node (or nodes) which receive(s) the largest total
input. The winning population then triggers associative pattern learning to update the adaptive
weights.
Clustering algorithms implemented by distortion-based CL techniques commonly have the

prototypes corresponding to the weights of neurons, for example, the centre of their receptive
field in the input feature space. A common feature of the CL clustering algorithms is a com-
petitive stage which precedes each learning step and decides to what extent a neuron may adapt
its weights to a new input pattern. The goal of CL is the minimisation of the distortion or quan-
tisation error in vector quantisation.
Kohonen made particularly strong implementation of CL in his work on learning vector

quantisation (LVQ) and self-organising maps (SOM) – also known as self-organising feature
maps (SOFM) (Kohonen, 1990). Intrinsically, LVQ performs supervised learning, and is not
categorised as a clustering algorithm. Nevertheless, its learning properties provide an insight to
describe the potential data structure using the prototype vectors in the competitive layer.
It inspires many other CL clustering algorithms, such as generalised LVQ (GLVQ) by Pal,
Bezdek and Tsao (1993), Neural-gas network by Martinetz, Berkovich and Schulten (1993),
and so on. SOM is one of the most popular clustering algorithms, ideally suited to exploratory
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data analysis, allowing one to impose partial structure on the clusters and facilitating easy
visualisation and interpretation. However, SOM also suffers the problems caused by a number
of user-predefined parameters, for example the size of the lattice, the number of clusters, and
so on. Additionally, trained SOM may suffer from input space density misrepresentation,
where areas of low pattern density may be over-represented and areas of high density
under-represented (Kohonen, 2001).
Adaptive resonance theory (ART) is another learning model growing out of the CL model,

which was first introduced by Grossberg (1980) and developed by Carpenter and Grossberg
(1987a, b, 1988, 1990; Carpenter, Grossberg and Reynolds, 1991; Carpenter, Grossberg
and Rosen 1991a,b). ART is a cognitive and neural theory of how the brain quickly learns
to categorise, recognise, and predict objects and events in a changing world. One of the key
computational ideas within ART is that top-down learned expectations focus attention upon
bottom-up information in a way that protects previously learned memories from being washed
away by new learning, and enables new learning to be automatically incorporated into the total
knowledge base of the system in a globally self-consistent way.
Most prototype-based CL algorithms employ either the winner-take-all (WTA) paradigm

or the winner-take-most (WTM) paradigm. The major issue with theWTA paradigm is the pos-
sible existence of dead nodes. In such cases, some prototypes can never become a winner
because of inappropriate initialisation, and therefore they have no contribution to learning.
WTM decreases the dependency on the initialisation of prototype locations; however, an unde-
sirable side effect is that since all prototypes are attracted to each input pattern, some of them
are detracted from their corresponding clusters. Zhang and Liu proposed a self-splitting
competitive learning (SSCL) clustering based on a distinct paradigm: one-prototype-take-
one-cluster (OPTOC) (Zhang and Liu, 2002).
Aforementioned prototype-based algorithms have the advantage of being able to incorporate

knowledge about the global shape or size of clusters by using appropriate prototypes and
distance measures in the objective function. However, these algorithms suffer from three major
drawbacks, namely, the difficulty in determining the number of clusters, the sensitivity to
noise and outliers, and the sensitivity to initialisation. Rhouma and Frigui developed a self-
organisation of pulse-coupled oscillators algorithm, called self-organising oscillator networks
(SOON) (Rhouma and Frigui, 2001), which was used to analyse microarray gene expression
data later by Salem, Jack and Nandi (2008). The SOON algorithm has its root in a biological
process with an interesting physical characteristic: Fireflies flash at random when considered
by themselves; however, they exhibit the characteristic of firing together when in groups that
are physically close to each other. The objective of this chapter is to introduce these neural
network-based algorithms.

14.2 Algorithms

14.2.1 SOM

SOM belongs to one of the categories of neural network architectures, where neighbouring
cells in a neural network compete in their activities by means of mutual lateral interactions,
and develop adaptively into specific detectors of different signal patterns. The objective of
SOM is to represent high-dimensional input patterns with prototype vectors that can be visua-
lised in a usually two-dimensional lattice structure.
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Consider a 4 × 4 grid SOM depicted in Figure 14.1. Note that the arrangement of the grid is
not necessary to be rectangular; it can be hexagonal, circular, and so on. The grid in Figure 14.1
has K = 16 neurons and each neuron has a weight vector, denoted by wi, i= 1,…,K which is
initialised randomly. Let X = xn n= 1,…,N be the input data. We calculate the Euclidean
distances between input data X and weight vectors, and then we can obtain for each data vector
xn the best match unit (BMU) that minimises the Euclidean distance between xn and weight
vectors, expressed as shown in Equation (14.1).

BMU= argmin
j

xn−wj 14 1

For theWTA paradigm, only BMU has the opportunity to update its weight vector. Virtually,
SOM employs the WTM paradigm, in which at each learning step all neurons within a
neighbourhood set around BMU can also be updated. The width or radius of this neighbour-
hood set is time-varying: it shrinks monotonically with time and ends with only BMU in the set.
Let us define the neighbourhood set as Ns. The updating process in time t may be expressed as
Equation (14.2).

x1

w1 w2 w3 w4

wk

wi

xn

Figure 14.1 Demonstration of the strategy of SOM. Each node on the grid represents a neuron with
a weight vector wi, i= 1,…,K. Only the winning neuron, for example wi and its surrounding neurons,
which are in the dotted circle, have the opportunity to update
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wi t + 1 =
wi t + h t xn−wi t if i Ns t

wi t if i Ns t
14 2

where h(t) is the neighbourhood function that is often defined as given in Equation (14.3),

h t = α t exp −
rBMU−ri2

2σ2 t
14 3

where α(t) is the monotonically decreasing learning rate, r represents the position of corre-
sponding neuron, and σ(t) is the monotonically decreasing kernel width function. The summary
of the clustering process of SOM is given in Table 14.1. In MATLAB, SOM can be performed
by a combination of several functions, namely newsom, which initialises a SOM network,
train, which trains the SOM network, and sim, which performs the clustering using the trained
network.Note that the input data to the train function are the same as those to the sim function for
clustering purposes. There are three packages in R providing SOM functions, namely kohonen
package, som package, andwccsom package. InWeka, the function SelfOrganizingMap can be
called from package weka.clusterers.

14.2.2 GLVQ

LVQ discovers cluster structure hidden in unlabelled data. In principle, k-means, which was
introduced in Chapter 10, and LVQ are very much alike. In LVQ, the salient feature is that
the LVQ network consists of two layers, namely input layer and competitive layer. Each neuron
in the competitive layer has a weight vector (or prototype) attached to it. The prototypes
W = wi i= 1,…,K are essentially a network array of cluster centres. When an input vector
xn is submitted to this network, distances are computed between each weight vector wi and
xn. The neurons in the competitive layer compete and a winner neuron with minimum distance
is found. Subsequently, the weight vector of the winner neuron is updated by using
Equation (14.4).

wi t + 1 =wi t + α t xk−wi t 14 4

LVQ suffers problems which result from two causes: (1) an improper choice of initial neu-
rons, and (2) the WTA strategy.

Table 14.1 Summary of the clustering process of SOM by Kohonen (1990)

Step 1 Define the topology of SOM and initialise each node’s weights wi 0 , i = 1,…,K, randomly;
Step 2 Find the best matching unit (BMU) by calculating the distance between the input vector and the

weights of each node, that is J = argjmin x−wj ;
Step 3 The radius of the neighbourhood around the BMU is calculated. The size of the neighbourhood

decreases with each iteration;
Step 4 Each node in the BMU’s neighbourhood has its weights adjusted to become more like the BMU.

Nodes closest to the BMU are altered more than the nodes furthest away in the neighbourhood;
Step 5 Repeat from step 2 for enough iterations for convergence.
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Pal et al. developed a GLVQ algorithm to circumvent these issues (Pal, Bezdek and Tsao,
1993). Let L(X,W) be a loss function which measures the locally weighted mismatch of xnwith
respect to the winner neuron, as given in Equation (14.5),

L X,W =
N

n= 1

K

k = 1

gnk xn−wk
2 14 5

where Equation (14.6) holds.

gnk =

1 if k is winner
1

K

j= 1
xn−wj

2
otherwise 14 6

Therefore, for a fixed set of data points X, the problem reduces to the unconstrained
optimisation problem as set out in Equation (14.7).

W = argmin
W

L X,W 14 7

The solution of this minimisation problem can be approximated by local gradient descent

search of L(X,W). Let us define D=
K

j = 1
xn−wj

2
, then the update rules are formulated

as shown in Equation (14.8),

wi t + 1 =wi t +α t xn−wi t
D2−D + xn−wi t

2

D2
14 8

for the winner neuron, say i, of the data point xn; and for other K−1 neurons
Equation (14.9) holds.

wj t + 1 =wj t + α t xn−wj t
xn−wj t

2

D2
14 9

To avoid possible oscillations of the solution, the amount of correction should be reduced as
iteration proceeds, thus α(t) is defined as α0 1− t T to satisfy the condition t ∞ , α t 0,
where α0 0,1 and T is the maximum number of iterations.

14.2.3 Neural-gas

Neural-gas proposed by Martinetz, Berkovich and Schulten (1993) is a neural network-based
clustering inspired by LVQ and SOM. The algorithm was named ‘neural-gas’ because it
employs the dynamics of the feature vectors during the adaptation process, which distribute
themselves like gas within the data space.
To avoid being confined to local minima during the adaptation procedure, like k-means, an

adaptation approach called ‘soft-max’ is introduced into the neural-gas algorithm. Moreover,
a neighbourhood ranking strategy is also employed so that not only the winning neuron but all
neurons depending on their proximity to input data vector can be updated. Each time data
vector xn is presented, the neighbourhood ranking (wi0 ,wi1 ,…, wiK−1 ) of the weight vectors
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is determined according to their distances from xn, where wi0 is the closest neuron to xn,
and wik−1 −xn < wik −xn . Let ki(xn, w) denote the number k associated with each vector
wi. The adaptation step for adjusting the wi is given by Equation (14.10),

Δwi = ϵ hλ ki xn,w xn−wi , i = 1,…,K 14 10

where the step size ϵ 0,1 describes the overall extent of the modification and hλ(ki(xn, w))
= exp −ki xn,w λ .
The dynamics of the neurons obey a stochastic gradient descent on the cost function, given in
Equation (14.11),

L X,W =
N

n= 1

K

i = 1

1
2C λ

pi xn hλ ki xn,w wi−xn
2 14 11

where pi(xn) is the fuzzy membership of data vector xn to cluster i, and is expressed as
Equation (14.12),

pi xn =
hλ ki xn,w

C λ
14 12

where Equation (14.13) holds.

C λ =
K

i= 1

hλ ki xn,w 14 13

There are two main advantages of the neural-gas algorithm: (1) it converges quickly to low
distortion errors; (2) it reaches a distortion error lower than that resulting from k-means and
SOM. However, the nature of the neural-gas algorithm requires knowledge of the number
of neurons in advance, which limits the use of neural-gas in practical applications where the
problem is to determine a suitable number of neurons a priori. Depending on the complexity
of the data distribution to be modelled, very different numbers of neurons may be appropriate.
Nevertheless, in light of the neural-gas algorithm, many other algorithms were proposed to
circumvent this problem, for example the growing neural-gas (GNG) algorithm (Fritzke,
1995), and the growing cell structures (GCS) algorithm (Fritzke, 1994).

14.2.4 ART

ART proposes a solution of the stability-plasticity dilemma (Grossberg, 1976, 1980): an
adequate algorithm must be capable of plasticity in order to learn about significant new events,
yet it must also remain stable in response to irrelevant or often repeated events. ART can learn
arbitrary input patterns in a stable, fast, and self-organising way. ART itself does not possess a
neural network architecture; it is rather a learning theory in which resonance in neural circuits
can trigger fast learning. Since it was invented more than two decades ago, ART has become a
large family of neural network architectures with many variants, which are summarised in
Table 14.2. It is not possible for us to detail all ART algorithms because of the limit of space.
We focus on the basic concept of ART.
ART-1, which is the first version of ART networks for binary data, is shown in Figure 14.2.

There are two major subsystems: attentional subsystem and orienting subsystem.
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Table 14.2 Summary of the variants of ART

Name Comments References

ART-1 The simplest variety of ART networks, accepting
only binary inputs

Carpenter and Grossberg (1987b)

ART-2 Extended to analog input patterns Carpenter and Grossberg (1987a)
ART-2A A streamlined form of ART-2 with a drastically

accelerated runtime
Carpenter, Grossberg and
Reynolds (1991)

ART-3 A new mechanism originating from elaborate
biological processes to achieve more efficient
parallel search in hierarchical structures

Carpenter and Grossberg (1990)

Fuzzy ART Fuzzy logic was incorporated into ART’s pattern
recognition, thus generalising ART

Carpenter, Grossberg and
Rosen (1991a)

ARTMAP Known as Predictive ART, combines two slightly
modified ART-1 or ART-2 units into a super-
vised learning structure

Carpenter, Grossberg and
Rosen (1991b)

Fuzzy
ARTMAP

ARTMAP using fuzzy ART units Carpenter et al. (1992)

AHN Adaptive Hamming net, a fast-learning
ART 1 model without searching

Hung and Lin (1995)

Gaussian
ARTMAP

A synthesis of a Gaussian classifier and
ART neural network

Williamson (1996)

PART Projective ART Cao and Wu (2002)

Attentional
subsystem

Orienting
subsystem

Gain 2

Gain 1

LTM

Input pattern

LTM

ρ
–

+

ResetF2

F1

Figure 14.2 ART-1 consists of an attentional subsystem and an orienting subsystem. The attentional
subsystem has two STM layers, F1 and F2. LTM traces between F1 and F2 multiply the signal in
these pathways. Gain controls enable F1 and F2 to distinguish current stages of a running circle. The
orienting subsystem generates a reset wave to F2 when mismatches between bottom-up and top-down
patterns occur at F1
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Multiple interactingmemory systems are needed tomonitor and adaptively react to the novelty of
events. Interactions between two functionally complementary subsystems are needed to process
familiar and unfamiliar events. Familiar events are processedwith an attentional subsystem. This
subsystem establishes precise internal representations of and responses to familiar events.
It also builds up the learned top-down expectations that help to stabilise the learned bottom-
up codes of familiar events. The orienting subsystem is essential for expressing whether a novel
pattern is familiar andwell represented by an existing recognition code or unfamiliar and in need
of a new recognition code. It resets the attentional subsystem when an unfamiliar event occurs.
The attentional subsystem consists of a two-layer short-term memory (STM) structure where

F1 is called feature representation field and F2 is called category representation field. A stream
of input patterns to a network F1 can train the adaptive weights, or long-term memory (LTM)
traces that multiply the signals in the pathways from F1 to a coding level F2. Each neuron in F1

is connected to all neurons in F2 via the continuous-valued bottom-up weight matrix W12 and
top-down weight matrix W21. The prototypes of clusters are stored in layer F2. Processing in
ART-1 can be divided into four phases: recognition, comparison, search, and learn.
Recognition phase is also known as bottom-up activation. Initially, if no input pattern is

applied, all recognition in F2 is disabled and two control gains G1 and G2, are set to zero. This
causes all F2 elements to be zero, giving them equal chance to win the subsequent recognition
competition. The gain control 2 depends only on the input pattern: G2 = 1 if there is an input;
G2 = 0, otherwise. The gain control 1 depends on both the input pattern and the output from F2,
denoted byO2:G1 = 1, if there is an input andO2 = 0;G1 = 0, otherwise. Each node in F1 whose
activity is beyond the threshold (G1 = 1 sends excitatory outputs to the nodes in F2. The F1

output pattern O1 is multiplied by the LTM traces W12. Each node in F2 sums up all its
LTM gated signals, as shown in Equation (14.14).

v2j =
i

O1iW
12
ij 14 14

These connections represent the input pattern classification categories, where each weight
stores one category. The output O2j is defined so that the element that receives the largest input
should be the winner. As such, the layer F2 works as a WTA strategy described by
Equation (14.15),

O2j =
1 if G2 = 1 v2j =max v2j

0 otherwise
14 15

where represents the logical AND operation. The F2 unit that receives the largest F1 output is
the one that best matches the input vector category, thus wins the competition. The F2 winner
node fires and simultaneously inhibits all other nodes in the layer.
In the comparison phase, also known as top-down template matching, the STM activation

pattern O2 on F2 generates a top-down template on F1. This pattern is multiplied by the LTM
traces W21 and each node in F1 obtains values shown in Equation (14.16).

v1i =
j

O2jW
21
ij 14 16

The most active recognition unit from F2 passes a signal back to comparison layer F1. Now
G1 is inhibited because the output from F2 is active. If there is a good match between the
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top-down template and the input vector, the system becomes stable and learning then occurs;
otherwise, the reset layer in the orienting subsystem then inhibits the F2 layer. There is a
threshold, called vigilance level ρ 0,1 . If the match degree is less than the vigilance level,
the reset signal is then sent to F2.
The salient difference between ART-1 and ART-2 (fuzzy ART) is that the binary AND oper-

ator in ART-1 is replaced by the fuzzy AND operator, which is defined as A B=min A,B .
The learning of the LTM tracesWj when the node j is active, is then given by Equation (14.17).

Wnew
j = β x Wold

j + 1−β Wold
j 14 17

Many variants of ART have been developed and applied to large-scale technological and
biological applications by authors around the world. Readers who are interested may be
referred to a quite recent survey paper by Grossberg (2013). ART-1, ART-2, and ARTMAP
are available in R package RSNNS.

14.2.5 OPTOC

OPTOC is a CL paradigm proposed by Zhang and Liu (2002). Unlike WTA and WTM para-
digms, the key technique used in OPTOC is that, for each prototype, an online learning vector,
asymptotic property vector (APV) is assigned to guide the learning of this prototype. With the
‘help’ of the APV, each prototype will locate only one natural cluster and ignore other clusters in
the case that the number of prototypes is less than that of clusters. One of the well-known critical
problems with CL is the difficulty in determining the number of clusters. With the OPTOC learn-
ing paradigm, SSCL algorithm starts from only a single prototype which is randomly initialised in
the feature space. During the learning period, one of the prototypes (initially, the only single
prototype) will be chosen to split into two prototypes based on a split validity measure. This
self-splitting behaviour terminates if no more prototypes are suitable for further splitting.
Given each prototype, Pk, the key technique is that an online learning vector, APV Ak is

assigned to guide the learning of this prototype. For simplicity, Ak represents the APV for
prototype Pk and nAk denotes the learning counter (winning counter) of Ak. As a necessary
condition of OPTOC mechanism, Ak is required to initialise at a random location, which is
far from its associated prototype Pk and nAk is initially zero. Taking the input pattern xn as a
neighbour if it satisfies the condition Pk,xn ≤ Pk,Ak , where , is the inner product oper-
ator. To implement the OPTOC paradigm, Ak is updated online to construct a dynamic neigh-
bourhood of Pk. The patterns ‘outside’ of the dynamic neighbourhood will contribute less to the
learning of Pk as compared with those ‘inside’ patterns.
The update ofAk depends on the relative locations of the input data point xn, prototype Pk and

Ak itself, as mathematically given by Equation (14.18),

Ak t + 1 =Ak t +
1
nAk

δk xn−Ak t Θ Pk t ,xn,Ak t 14 18

where 0 < δk ≤ 1, and δk is defined as given in Equation (14.19),

δk =
Pk ,Ak

Pk ,xn + Pk ,Ak

2

14 19
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and Θ(a, b, c) is a general function given by Equation (14.20)

Θ a,b,c =
1 a,b ≤ a,c
0 otherwise

14 20

For each update of Ak, its learning counter nAk is computed as shown in Equation (14.21).

nAk = nAk + δk Θ Pk t ,xn,Ak t 14 21

Thus, it may be observed that APV Ak always attempts to move toward Pk. The update of the
prototype Pk is given by Equation (14.22),

Pk t + 1 =Pk t + αk xn−Pk t 14 22

where Equation (14.23) holds.

αk =
Pk ,Ak

Pk ,xn + Pk ,Ak

2

14 23

In addition to the APV, there is another auxiliary vector, called distant property vector (DPV)
Rk, assisting the cluster, which contains more than one prototype, to split. Let nRk denote the
learning counter forRk, which is initialised to zero.Rkwill be updated to a distant location from
Pk. The efficiency of splitting is improved by determining the update schedule of Rk adaptively
from the analysis of the feature space. Contrary to the APVAk, the DPVRk always tries to move
away from Pk. The update of DPV Rk is given by Equation (14.24),

Rk t + 1 =Rk t +
1
nRk

ρk xn−Rk t Θ Pk t ,Rk t ,xn 14 24

where the learning rate of Rk, ρk, is given by Equation (14.25).

ρk =
Pk ,xn

Pk ,xn + Pk ,Rk

2

14 25

The SSCL algorithm based on the OPTOC CL paradigm is considered as a solution of
two long standing critical problems in clustering, namely (1) the difficulty in determining
the number of clusters, and (2) the sensitivity to prototype initialisation.

14.2.6 SOON

Rhouma and Frigui developed a self-organisation of pulse-coupled oscillators algorithm
(Rhouma and Frigui, 2001), which was later named as SOON (Salem, Jack and Nandi,
2008). SOON has its root in a biological process that fireflies flash at random when considered
by themselves; however, they exhibit the characteristic of firing together when in groups that
are physically close to each other. Technically, SOON is an efficient synchronisation model
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that organises a population of integrate-and-fire oscillators into stable and structured groups.
Each oscillator fires synchronically with all the others within its group, but the groups them-
selves fire with a constant phase difference.
Let = 1,…, N be a set of N oscillators, where each oscillator i is characterised by a

phase ϕi and a state variable si, given by Equation (14.26),

si = fi ϕi =
1
b
ln 1 + eb−1 ϕi 14 26

where b is a constant value used to control the curve of the oscillator. Positive values of b will
make the curve concave down, while negative values of bwill make the curve concave up. ϕi

0,1 is the phase angle of the oscillator, and determines the likelihood of the oscillator to fire,
where 0 is just fired and 1 is firing. The output of the oscillator si is bounded in the range [0, 1]
for all values of fi(ϕi) by Equation (14.27),

s∗i =B si + ϵj ϕi 14 27

where B is a limiting function as given by Equation (14.28),

B x =

x if 0 ≤ x ≤ 1

0 if x < 0

1 if x > 1

14 28

and ϵj(ϕi) is the coupling strength of an oscillator j at a given phase ϕi, which is written as
shown in Equation (14.29).

ϵj ϕi =

CE 1−
dij
δ0

2

, if dij ≤ δ0

−CI
dij−δ0
δ1−δ0

2

, if δ0 < dij ≤ δ1

−CI , otherwise

14 29

Having decided on a limit distance δ0, δ1 is set to be five times δ0. The coupling function
promotes all oscillators that lie within the distance δ0, increasing the phase value by the constant
of excitation CE, multiplied by the factor depending on the ratio of the distance between the
winning oscillator and the oscillator under consideration, and δ0. This, in turn, makes the group
of oscillators more likely to synchronise with the winning oscillator in future iterations. The
phase of all those with distance lying in the interval δ0 < dij ≤ δ1 are inhibited by CI, the coef-
ficient of inhibition multiplied by a ratio that takes into account how close the oscillator under
consideration is to the winning oscillator. All values of dij > δ1 are hard limited to –CI. The
value of CE is typically relatively small, of the order of 0.1 ~ 0.2. The value of CI is normally
set to the value CE /N (N is the number of data points), as any given data point is likely to be
inhibited more often than it is likely to be excited.
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Once a group of oscillators synchronise, their dynamics must remain identical in order to
keep the synchronisation. Let G = g1 ,…, gn be a set of n oscillators that have synchro-
nised. To keep these oscillators synchronised, the coupling strength of group members should
be the same [Equation (14.30)].

ϵi ϕg1 = ϵi ϕg2 = = ϵi ϕgn , or rig1 = rig2 = = rign = riG 14 30

There are three possible choices for riG, corresponding to single linkage, complete linkage,
and average linkage, respectively, and these are examined in Equation (14.31).

riG =

min rig1 ,rig2 , ,rign

max rig1 ,rig2 , ,rign

1
n

n

j = 1

rigj

14 31

Different choices may generate quite different results in many circumstances.
There are two SOON algorithms: SOON-1 and SOON-2 (Rhouma and Frigui, 2001; Salem,

Jack and Nandi, 2008), which are summarised in Table 14.3 and Table 14.4, respectively.
SOON-1 was designed for the application with only relational data available; for example,
networks. SOON-2 was designed for the datasets where each data object is characterised by
M numerical features. Compared with SOON-1, SOON-2 is more efficient because it uses
prototypes to both represent clusters and avoid computing and storing the pairwise distances,
which is a potential problem when the size of the dataset is big. SOON-2 starts with a set of K
initial prototypes {Pk}, k = 1,…,K, and each data object xi is represented by an oscillator i.
The distance between oscillator i and prototype k, is denoted by dik = d xi,Pk . Note that the
distance is adjustable. If i belongs to one of the synchronised groups, then its distance will

Table 14.3 Summary of the SOON-1 algorithm

Step 1 Construct the relative distance matrix D = dij ; Initialise phases ϕi randomly;

Step 2 Identify the next oscillator to fire: i ϕi = max
j= 1,…,N

ϕj ;

Step 3 Bring ϕi to threshold, and adjust other phases: ϕk =ϕk + 1−ϕi for k = 1,…,N;
Step 4 FOR all oscillators j, j i DO

Compute state variable sk = f ϕk using Equation (14.26);
Compute coupling strength ϵi(ϕk) using Equation (14.29);
Adjust state variables using Equation (14.27);
Compute new phases using ϕk = f

−1 sk
END FOR

Step 5 Identify synchronised oscillators and reset their phases;
Step 6 Adjust relations of all oscillators that have synchronised in Equation (14.31);
Step 7 Repeat Step 2 until synchronised group stabilises.

192 Integrative Cluster Analysis in Bioinformatics



be replaced by the average distances of all oscillators that constitute the group Gk, which is
written as Equation (14.32).

dik =

dik if i Gk

l Gk
dil

Gk
if i Gk

14 32

14.3 Discussion

There have been many neural network-based clustering algorithms applied in the bioinformat-
ics field. The collections of publicly accessible resources for neural network-based clustering
are shown in Table 14.5. A successful example of their application in the analysis of
gene expression data was by Tamayo and colleagues (1999), where SOM was found to be sig-
nificantly superior to hierarchical clustering and k-means in both robustness and accuracy. Hsu
et al. proposed an algorithm combining unsupervised hierarchical clustering and SOM to
perform class discovery and marker-gene identification in microarray gene expression data

Table 14.4 Summary of the SOON-2 algorithm

Step 1 Select a distance measure d , ; Initialise phases ϕi, i= 1,…,N randomly; Set K, and initialise
the prototype Pk randomly for k = 1,…,K;

Step 2 Identify the next oscillator to fire: i ϕi = max
j = 1,…,N

ϕj ;

Step 3 Identify the closest prototype to i: P∗ d i,P∗ = min
k = 1,…,K

d j,Pk ;

Step 4 Compute d j,P∗ for j= 1,N and adjust them using Equation (14.32)
Step 5 Bring ϕi to threshold, and adjust other phases: ϕk =ϕk + 1−ϕi for k = 1,…,N;
Step 6 FOR all oscillators j, j i DO

Compute state variable sk = f ϕk using Equation (14.26);
Compute coupling strength ϵi(ϕk) using Equation (14.29);
Adjust state variables using Equation (14.27);
Compute new phases using ϕk = f

−1 sk
END FOR

Step 7 Identify synchronised oscillators and reset their phases;
Step 8 Update prototype Pk;
Step 9 Repeat Step 2 until synchronised group stabilises.

Table 14.5 Collection of publicly accessible resources for neural network-based clustering

Algorithm name Platform Package Function

SOM R kohonen/som/wccsom som
MATLAB newsom/train/sim
weka Weka.clusterers SelfOrganizingMap

ART R RSNNS art1/art2/artmap
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(Hsu, Tang and Halgamuge, 2003). Wang et al. also employed SOM as the first step of their
algorithm (Wang et al., 2003). The aim of applying the SOM procedure in the algorithm was to
find map units that could represent the configuration of the input dataset, and at the same time to
achieve a continuous mapping from the input gene space to a lattice. Chavez-Alvarez et al.
conducted a study very recently to use SOM to cluster multiple yeast cell cycle datasets
(Chavez-Alvarez, Chavoya and Mendez-Vazquez, 2014). Besides SOM, there are also many
other algorithms applied in the bioinformatics field; for example, fuzzy ART was applied to
analyse the time series expression data during sporulation of budding yeast (Tomida et al.,
2002); another variant of ART, called projective ART, was developed to select specific genes
for each subtype in a cancer diagnosis marker-extraction study of soft-tissue sarcomas
(Takahashi, Kobayashi and Honda, 2005; Takahashi et al., 2006), and later, the analytical
results were further investigated (Takahashi et al., 2013). A self-splitting and merging compet-
itive clustering algorithm based on the OPTOC paradigm was applied to identify biologically
relevant groups of genes (Wu et al., 2004); SOON was applied to cluster microarray data by
Salem, Jack and Nandi (2008). We will discuss these applications in more detail in Chapter 19.
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15
Mixture Model Clustering

15.1 Introduction

In this chapter, we introduce one of most important clustering families, mixture model methods,
which is also known as model-based clustering. Model-based clustering is a wide family of
algorithms; the common idea behind them is to model an unknown distribution with a mixture
of simpler distributions. This family of algorithms has attracted, and is still attracting, a lot of
attention because of its excellent performance.
The classification of mixture model clustering can be based on the following four criteria:

(i) in terms of the number of components in the mixture, they can be classified as finite mixture
model (parametric) and infinite mixture model (non-parametric); (ii) in terms of the clustering
kernel, there are several classes, namely, the multivariate normal models or Gaussian mixture
models (GMMs), the hidden Markov mixture models, and other mixture models based on
non-Gaussian distributions like the Student t-distribution; (iii) in terms of the estimation
method, they can be classified to non-Bayesian methods (maximum likelihood (ML) criterion)
andBayesianmethods, andwithin Bayesianmethods, they can be further classified into Markov
Chain Monte Carlo (MCMC) methods and variational approximation methods; (iv) in terms
of dealing with dimensionality, there are classes of factorising algorithms, for example, mixture
of factor analysers (MFA), MFA with common factor loadings, mixture of probabilistic prin-
cipal component analysers, mixture of independent component analysers, and so on.
For the sake of clarity and simplicity, the hierarchy of this chapter is shown in Figure 15.1.

We classify the mixture models into two large groups in terms of the number of components in
the mixture, namely finite mixture models and infinite mixture models. Finite mixture models
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assume that the number of mixture components is correctly specified; while infinite mixture
models do not rely on this assumption, and consider a countably infinite number of compo-
nents. Since infinite mixture models may bypass the overfitting problem naturally, they have
received more and more attention recently.
There are several types of finite mixture models either in terms of the clustering kernel,

namely, the multivariate normal models or Gaussian mixture model, the hidden Markov model
(HMM), and other non-Gaussian models like Student t-distribution, or in terms of dealing with
dimensionality, MFA, MFA with common factor loadings, mixture of probabilistic principal
component analysers, and mixture of multivariate t-distributions. In most of the finite mixture
models, there are mainly two subgroups in terms of whether the prior is employed or not in
the estimation methods. The models that do not consider the prior are called non-Bayesian
models, and are based on anMLmethod, that is the expectation maximisation (EM) algorithm.
The models that consider the prior are called Bayesian models in which either variational
Bayes (VB) approximation methods or MCMC methods are employed.
The infinite mixture model is also known as Bayesian non-parametric mixture model, which

has become extremely popular in recent years, with applications in diverse fields, particularly
bioinformatics. Infinite mixture models can be classified into several types in terms of the dif-
ferent assumptions imposed on the prior of the mixing distribution. The well known Dirichlet
process mixture (DPM) model, which is one of the Bayesian non-parametric mixture models,
may trace back to the 1970s and was developed by Ferguson and Antoniak (Ferguson, 1973;
Antoniak, 1974). In this chapter, we will only introduce DPM, Chinese restaurant process
(CRP) mixture, and stick-breaking process (SBP) mixture.

Mixture models

Finite mixture model
(parametric)

Infinite mixture model
(Non-parametric)

Dirichlet process mixture
Chinese restaurant process mixture

Stick-breaking process mixture

Gaussian mixture models
Student t-mixture models

Hidden Markov mixture models
Mixture of factor analysers 

Maximum
likelihood

(EM)

Bayesian
methods

(VB/MCMC)

Bayesian methods
(MCMC)

Figure 15.1 The hierarchy of the family of mixture models clustering
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15.2 Finite Mixture Models

In this section, we mainly focus on finite mixture models, which have been widely used to clus-
ter and model the distributions of a variety of random phenomena. Comprehensive technical
details have been given in many books (McLachlan and Peel, 2000; Frühwirth-Schnatter, 2006;
McLachlan and Krishnan, 2007).
Suppose that we have a dataset X = xn RM × 1 n = 1,…,N , where xn is anM-dimensional

vector of feature variables. Generally speaking, finite mixture model methods model
the density of X as a mixture of a number G of multivariate component distributions
[Equation (15.1)],

f xn Θ =
G

g= 1

τg f xn θg 15 1

where Θ = τg,θg g = 1,…,G denotes the parameter set, τg 0,1 is the probability of

membership of the component g, and
G

g= 1
τg = 1. Essentially, f xn θg is a generic symbol

representing the density of the multivariate random variable xn with parameters θg.

15.2.1 Various Mixture Models

In this section, the main task is to introduce various finite mixture models and leave estimation
methods to the subsequent two subsections.

15.2.1.1 Gaussian Mixture Models

In model-based clustering, the Gaussian mixture model, which is also known as the mixture
of multivariate normal distributions, is most commonly used (Banfield and Raftery, 1993;
Dempster et al., 1977; Yeung et al., 2001; Fraley and Raftery, 2002), because of its advantage
over conventional Euclidean distance-based algorithms, say k-means and hierarchical
clustering. The covariance structure of the Gaussian mixture model potentially accounts for
correlations between features within an object. Moreover, the covariance can also be flexible
subject to different constraints (Yeung et al., 2001). The density of a finite Gaussian mixture
model is given by Equation (15.2),

f xn Θ =
G

g = 1

τgp xn μg,Σg 15 2

where p xn μg,Σg is a density of a multivariate Gaussian random variable xnwith mean μg and

covariance matrix Σg, and Θ= τg, μg,Σg g = 1, ,G . The density function of a multivar-
iate Gaussian distribution can be written as shown in Equation (15.3).
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p x μ,Σ =
1

2π M Σ
exp −

1
2
x−μ TΣ−1 x−μ 15 3

Considering that each covariance matrix is parameterised by eigenvalue decomposition in the
form shown in Equation (15.4),

Σg = λgDgAgDT
g 15 4

where λg is a scalar, Ag is a diagonal matrix whose elements are proportional to the eigenvalues
of Σg, and Dg is the orthogonal matrix of eigenvectors (Fraley and Raftery, 1999; Yeung et al.,
2001). These three parameters control three characteristics of the covariance matrix, namely
volume (λg), shape (Ag) and orientation (Dg), respectively. The parameterisation unifies many
well known models, for example, the uniform spherical variance, constant variance, uncon-
strained variance and so on. Ten covariance structures are shown in Table 15.1. The model
identifiers code geometric characteristics of the model. For example ‘EEV’ denotes the model
in which the volumes of all components are equal (E), the shapes of all components are equal
(E), and the orientation is allowed to vary (V); ‘EI’ denotes equal volume spherical model (both
Ag and Dg are identity matrices).

15.2.1.2 Hidden Markov Mixture Models

A HMM describes an unobservable stochastic process consisting of a series of states, each of
which is related to another stochastic process that emits observable symbols (Rabiner, 1989).
A complete HMM can be specified by a set of the following elements:

1. A set of L unobservable states S= S1,…, SL ;
2. A set of D observable symbols O = O1,…,OD ;
3. A state transition probability distribution A= aij i, j= 1,…,L , where aij represents the

transition probability from state Si at time t, to state Sj at time t + 1 [Equation (15.5)],

Table 15.1 Ten covariance structures are characterised based on the parameterisations

ID Model Distribution Volume Shape Orientation

EI λI Spherical Equal Equal NA
VI λgI Spherical Variable Equal NA
EEE λDADT Ellipsoidal Equal Equal Equal
EEV λDgADT

g Ellipsoidal Equal Equal Variable

VEV λgDgADT
g Ellipsoidal Variable Equal Variable

VVV λgDgAgDT
g Ellipsoidal Variable Variable Variable

EEI λA Diagonal Equal Equal Coordinate axes
VEI λgA Diagonal Variable Equal Coordinate axes
EVI λAg Diagonal Equal Variable Coordinate axes
VVI λgAg Diagonal Variable Variable Coordinate axes
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aij =P S t + 1
j S t

i , and
L

j = 1

aij = 1 15 5

4. A symbol emission probability distribution B= bi d i = 1,…,L; d = 1,…,D , where bi(d)
represents the emission probability of the symbol xd at time t, in the state Si
[Equation (15.6)],

bi d =P o t
d S t

i , and
D

d = 1

bi d = 1 15 6

5. An initial state distribution γ = γi i = 1,…,L , where γi =P S 0
i .

The complete set of parameters of an HMM is ϑ = A,B,γ . A graph demonstration of an
HMM with three states and four observable symbols is shown in Figure 15.2.
Considering the clustering framework of finite mixture models shown in Equation (15.1), we

ought to cluster a set of N sequences X = x1,…, xN into G clusters, where xn consists of
M observation symbols. The mixture probability density can be written as Equation (15.7),

f xn Θ =
G

g = 1

τg f xn ϑg 15 7

where f xn ϑg is the density of an HMM with parameters ϑg = Ag,Bg, γg including state
transition probabilities, observation emission probabilities and initial state probabilities.

S1

x1

β11 β12

β13

β21

β31 β22

β32
β23

β14

β33

α23

β24

β34

α11

α12

α21

α22

α32

α33

x2 x3 x4

S2 S3

Figure 15.2 Graph demonstration of an HMM. In this demonstration, a set of states S = S1,S2, S3 and
an observation set x= x1, x2, x3, x4 are shown. A state transition probability distribution A= αij and a
symbol emission probability distribution B= βil are also shown
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15.2.1.3 Student t-Distribution Mixture Models

The t-distribution, also known as Student’s t-distribution, is a family of continuous probability
distributions. An M-dimensional random variable x follows a multivariate t-distribution
with mean, μ, positive definite symmetric and real covariance matrixΣ, and degrees of freedom
ν 0,∞ when, given a weight u, the variable x has the multivariate normal distribution with
mean μ and covariance matrix Σ/u as given in Equation (15.8),

x μ,Σ,ν,u μ,Σ u 15 8

where u follows a Gamma distribution parameterised by ν which is denoted as Ga(.,.)
[Equation (15.9)].

u Ga ν 2,ν 2 15 9

The density function of a multivariate t-distribution is given by Peel andMcLachlan (2000) and
McLachlan, Bean and Peel (2002) as Equation (15.10),

p x μ,Σ,ν =
Γ

ν +M
2

Σ −1 2

πν M 2Γ
ν

2
1 +

δ x,μ;Σ
ν

ν +M 2
15 10

where μ is mean vector, Σ is positive definite covariance matrix, ν 0,∞ is degrees of
freedom, and Equation (15.11)

δ x,μ;Σ = x−μ TΣ−1 x−μ 15 11

denotes the Mahalanobis distance between x and μ. If ν > 1, μ is the mean vector of x, and if
ν> 2, ν ν−1 Σ is its covariance matrix. As ν tends to infinity, the multivariate t-distribution
becomes multivariate Gaussian distribution with mean, μ, and covariance matrix, Σ. As the
multivariate t-distributions provide a heavy-tailed density function alternative to the normal
distribution, they have a sound mathematical basis for a robust method of mixture estimation
and clustering.
Therefore, the mixture of t-distributions has the following form [Equation (15.12)],

f xn Θ =
G

g = 1

τgf xn μg,Σg,νg 15 12

where the degrees of freedom νg g = 1,…,G can either be fixed or be inferred from the data
for each component thereby.

15.2.1.4 Mixture of Factor Analysers

Factor analysis (FA) is a statistical method for modelling the covariance structure of high
dimensional data using a small number of latent variables. Suppose that each independent
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and identically distributed ( i.i.d.)M dimensional data vector xn in dataset X follows a q-factor
model as shown in Equation (15.13),

xn =Ayn + μ+ εn

yn 0,I , εn 0,Ψ
15 13

where μ is an M-dimensional mean vector, A is an M × q factor loading matrix, yn is a
q-dimensional latent factor vector satisfying multivariate Gaussian distribution with zero mean
and covariance matrix as identity matrix, I is an identity matrix, and Ψ = diag ψ1,…,ψM is a
positive diagonal matrix. According to this factor model, the observation vector xn satisfies the
multivariate Gaussian distribution μ,Σ , where Σ=AAT +Ψ .
The MFA is a mixture of G FA models with mixture proportions τ = τg g= 1,…,G . The

mixture probability density can be written as Equation (15.14),

f xn Θ =
G

g = 1

τgf xn μg,Ag,Ψ g 15 14

where the conditions given in Equation (15.15) hold,

xn g =Agyng + μg + εng

yng 0,I , εng 0,Ψ g

15 15

which indicates that the observation vector xn generated from the gth FA model has parameters
(μg,Ag, Ψ g).
MFA is also known as parsimonious Gaussian mixture model (PGMM (McNicholas and

Murphy, 2008)). Similarly to the GMM, in terms of covariance matrix structure, eight different
PGMMs have been provided based on a full range of constraints, as shown in Table 15.2. As
we mentioned the covariance structure as being given by Σg =AgAT

g +Ψ g, there are constraints
that can be imposed on the covariance matrix, namely loading matrix, error covariance and
isotropic. The model identifier code shows the characteristics of these constraints; for example,
‘CCU’means that the loading matrix is constrained to be the same for all FA models, and error
covariance is also constrained; however, the isotropic characteristics are unconstrained and its

Table 15.2 Eight covariance structures are characterised based on the constraints

ID Model Loading matrix Error variance Isotropic Covariance parameters

CCC (A, ψI) Constrained Constrained Constrained Mq−q q−1 2 + 1
CCU (A,Ψ ) Constrained Constrained Unconstrained Mq−q q−1 2 +M
CUC (A, ψgI) Constrained Unconstrained Constrained Mq−q q−1 2 +G
CUU (A,Ψ g) Constrained Unconstrained Unconstrained Mq−q q−1 2 +GM
UCC (Ag, ψI) Unconstrained Constrained Constrained G Mq−q q−1 2 + 1
UCU (Ag, Ψ ) Unconstrained Constrained Unconstrained G Mq−q q−1 2 +M
UUC (Ag, ψgI) Unconstrained Unconstrained Constrained G Mq−q q−1 2 + 1
UUU (Ag, Ψg) Unconstrained Unconstrained Unconstrained G Mq−q q−1 2 +M
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shape is ellipsoidal rather than spherical. Therefore, the number of parameters in the covariance
matrix for this case is Mq−q q−1 2 +M .

15.2.1.5 Other Mixtures

There are also many other mixture models in the literature; for example, mixture of common
factor analysers (Baek, McLachlan and Flack, 2010), mixture of principal component analysers
(Tipping and Bishop, 1997, 1999), mixture of t-factor analysers (Andrews and McNicholas,
2011), and mixture of common t-factor analysers (Baek and McLachlan, 2011). For more
finite mixture models, the interested reader may be referred to the book by McLachlan and
Peel (2000).

15.2.2 Non-Bayesian Methods

15.2.2.1 Maximum Likelihood (ML)

ML has been the most commonly used approach to the fitting of mixture distributions. In this
subsection, we first define ML estimation in general, and will dive deep into EM algorithms in
the subsequent subsections.
With the ML approach to the estimation of the parameter set Θ in a postulated density

function f xn Θ , an estimate Θ is provided in regular solution by maximising the likelihood
(or log-likelihood) function, which is mathematically given by Equation (15.16),

ΘML = argmax
Θ

Θ orΘML = argmax
Θ

log Θ 15 16

where (Θ) is the likelihood function, written as shown in Equation (15.17).

Θ =
N

n = 1

f xn Θ 15 17

Thus, ΘML can be obtained by solving Equation (15.18).

∂ Θ
∂Θ

= 0, or equivalently
∂log Θ

∂Θ
= 0 15 18

15.2.2.2 Expectation Maximisation (EM) Algorithms

EM algorithms are iterative methods for finding ML estimates of parameters in a wide variety
of situations best described as incomplete-data problems. The EM algorithm was originally
proposed by Dempster et al. (1977). Following this pioneering paper, a large number of appli-
cations of EM algorithms have appeared in the literature. It was named expectation maximi-
sation because each iteration of the algorithm consists of an expectation step (E-step) and a
maximisation step (M-step).
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We now present a simple characterisation of the EM algorithm which can usually be applied.
Suppose that Θ(t) denotes the current value of Θ after t cycles of the algorithm. The next cycle
can be described in two steps, as follows:

• E-step: Compute the expected (Θ) with given X and Θ(t) by use of Equation (15.19) where
E( ) denotes the mathematical expectation.

Q Θ Θ t =E X,Θ t 15 19

• M-step: Maximise Q Θ Θ t with respect to Θ.

The EM algorithms for different mixture models are essentially extended from the above basic
idea of E and M steps.

EM Algorithm for GMM
Suppose that the true cluster membership zn = z1n,…, zGn 0,1 for the nth data
object, where G is the number of models, is known; the complete data are yn =
xn, zn n = 1,…,N , where zn is defined by Equation (15.20).

zgn =
1 if xn belongs to group g

0 otherwise
15 20

Therefore, it is easy to derive the complete-data likelihood as shown in Equation (15.21)

Θ =
N

n = 1

G

g = 1

τgf xn μg,Σg
zgn 15 21

or equivalently Equation (15.22).

log Θ =
N

n = 1

G

g = 1

zgnlog τgf xn μg,Σg 15 22

To proceed with the EM algorithm, first of all, a model for Σg has to be specified based on
Table 15.1; then an initial setting of zn must be given. A hierarchical agglomerative clustering
was used to initialise the EM algorithm (Ghosh and Chinnaiyan, 2002). In all clustering pro-
blems, the missing data are zn representing the cluster assignment. Therefore in the E-step,

given Θ t = τg, μg,Σg
t
g = 1,…,G , we can estimate E zn X,Θ t by Equation (15.23).

z t
gn =

τ t
g f xn μ t

g ,Σ t
g

G

j = 1
τ t
j f xn μ

t
j ,Σ t

j

, g = 1,…,G;n = 1,…,N 15 23
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The estimated membership zn is then substituted into Equations (15.21) or (15.22) in the
M-step. The likelihood or log-likelihood of the complete data can be maximised as a function
of Θ. Thus, we may obtain the parameters updated by Equation (15.24).

n t + 1
g =

N

n = 1

z t
gn

τ t + 1
g =

n t + 1
g

N

μ t + 1
g =

N

n = 1
z t
gnxn

n t + 1
g

15 24

and Σ t + 1
g depends on the chosen covariance model (Celeux and Govaert, 1995; Fraley and

Raftery, 1998).

EM Algorithm for Mixture of HMMs
The basic procedure for clustering using a mixture of HMMs was discussed by Smyth (1997).
It was suggested that the mixture of HMMs could be described as a single composite HMM
with a composite transition matrix [Equation (15.25)],

A =

A1 0

0 AG

15 25

where Ag is the transition matrix for the gth component where g = 1,…,G. Therefore, the clus-
tering procedure is summarised as follows (Xu and Wunsch, 2008):

1. Model each M-symbol (it is not necessary for them to be of equal length) sequence
xn xnm O, m = 1,…,M and n= 1,…,N, with an L-state HMM;

2. Calculate the log-likelihood log f xn ϑn of each sequence xn with respect to a given
model ϑn, n = 1,…,N;

3. Cluster the sequences into G clusters in terms of the distance measure based on the log-
likelihood;

4. Model each cluster with an HMM, and initialise the overall composite HMM using the
derived G HMMs;

5. Train the composite HMM with the Baum–Welch algorithm.

The EM algorithm for a single HMM, also known as the Baum–Welch algorithm, is used to
find the unknown parameters of HMM (Rabiner, 1989), expressed by Equation (15.26).

ϑ = argmax
ϑ

P x ϑ , ϑ = A,B,γ 15 26
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The Baum–Welch algorithm employs a forward-backward procedure to estimate ϑ iteratively,
as shown in the following steps:

1. Initialise the state sequence S = s 1 ,…,s M s t S , the observation sequence

O = o 1 ,…,o M o t O and set ϑ with random initial conditions;
2. E-step: Calculate the joint probability of the observations and state sequence for a given

model ϑ [Equation (15.27)].

P O,S ϑ =P O S,ϑ P S ϑ

P O ϑ =
S

P O,S ϑ P S ϑ 15 27

In the forward procedure, considering α t
i =P o 1 ,o 2 ,…,o t ,s t = si ϑ , we can have

αi 1 = γibi o
1 ;

α t
j =

L

i= 1

α t-1
i aij bj o t , j = 1,…,L; t = 2,…,M

15 28

In the backward procedure, considering β t
i =P o t + 1 ,o t + 2 ,…,o M s t = si,ϑ , we can

obtain the results set out in Equation (15.29).

β M
i = 1;

β t
i =

L

j = 1

aijbj o t + 1 β t + 1
j , j = 1,…,L; t = 2,…,M

15 29

We can now calculate the temporary variables, as shown in Equation (15.30):

δ t
i =

α t
i β t

i
L

j= 1
α t
j β t

j

;

ζ t
ij =

α t−1
i aijbj o t β t

j
L

k = 1

L

l = 1
α t−1
k aklbl o t β t

l

, i, j= 1,…,L

15 30

3. M-step: ϑ is updated to maximise the log-likelihood as follows [Equation (15.31)]:

ϑnew = argmax
ϑ

P O ϑ 15 31

Therefore, we can individually optimise each parameter of HMM as follows [Equation (15.32)]:

γi = δ
t
i ; aij =

M

t = 2
ζ t
ij

M

t = 2
δ t
i

; bj =

M

t = 1
1o t = kδ

t
i

M

t = 1
δ t
i

15 32

where 1o t = k is an indicator, which is one if o t = k, otherwise, 0.
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For the new model ϑnew, P O ϑnew ≥P O ϑ .

EM Algorithm for Student t-Distribution Mixture Models
In the EM framework, the complete data vector is (X, Z, u), where X = xn n= 1,…,N is the
set of observations, Z= zn n = 1,…,N is the component label vector, and u= un n= 1,…,N
is the weighting vector. Suppose that xn belongs to the gth component; then Equations (15.33)
and (15.34) hold.

xn un,zgn = 1 μg,Σg un 15 33

and

un zgn = 1 Ga
νg
2
,
νg
2

15 34

Therefore the complete data log-likelihood Equation (15.35) holds,

log Θ =
N

n = 1

G

g = 1

zgnlog τgf xn μg,Σg,un Ga
νg
2
,
νg
2

= log 1 τ + log 2 μg,Σg + log 3 ν

15 35

where Equations (15.36) hold,

log 1 τ =
N

n = 1

G

g= 1

zgnlogτglog 2 μg,Σg =
N

n= 1

G

g = 1

zgn −
M

2
log2π−

1
2
log Σg −

1
2
unδgn

log 3 ν =
N

n = 1

G

g = 1

zgn − logΓ
νg
2

+
νg
2
log

νg
2

+
νg
2

logun−un −
1
2
logun 15 36

where δgn = xn−μg
TΣ−1

g xn−μg . Therefore, the E-step calculates the expected complete

data log-likelihood Q Θ =Q1 τ +Q2 μg,Σg +Q3 ν , where Equation (15.37) holds.

Q1 τ =
N

n = 1

G

g = 1

zgnlogτg,Q2 μg,Σg

=
N

n = 1

G

g= 1

zgn −
M

2
log2π−

1
2
log Σg −

1
2
E un xn,zgn = 1 δgn

15 37
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To this end, we need to calculate Equations (15.38) and (15.39),

zgn =
τgf xn μg,Σg,νg

G

j= 1
f xn μj,Σj,νj

,τg =
1
N

N

n = 1

zgn 15 38

E un xn,zgn = 1 =
νg +M
νg + δgn

,E logun xn,zgn = 1 =ψ
νg +M

2
− log

1
2

νg + δgn 15 39

where ψ x = d logΓ x dx. In the M-step, maximising the log-likelihood of the complete data
yields the update equations of the respective mixture model parameters [Equation (15.40)].

μg =

N

n = 1
zgnugnxn

N

n = 1
zgnugn

,Σg =

N

n= 1
zgnugn xn−μg xn−μg

T

N

n = 1
zgn

15 40

The degrees of freedom for each component are computed as the solution to Equation (15.41).

log
νg
2

−ψ
νg
2

+ 1− log
νg +M

2
+

N

n = 1
zgn logugn−ugn

N

n = 1
zgn

+ψ
νg +M

2
= 0 15 41

EM Algorithm for MFA
The EM algorithm was adopted to fit FA and MFA by Ghahramani and Hinton (1996). Let us
consider the single factor analyser first of all, as shown in Equation (15.13). The random vector

xTn , y
T
n

T
has a multivariate normal distribution with mean (μT, 0T)T and covariance matrix

Equation (15.42).

AAT +Ψ A

AT Iq
15 42

It thus follows that the conditional distribution of yn given xn is given by Equation (15.43),

yn xn βT xn−μ ,Iq−β
TA 15 43

where β= AAT +Ψ
−1
A. The complete data log-likelihood for the single factor analyser is

mathematically given by Equation (15.44).

log X,Y =
N

n = 1

log f xn yn f yn

=C−
N

2
log Ψ −

1
2
tr Ψ −1

N

n= 1

xn−μ xn−μ
T

+
N

n = 1

xn−μ
TΨ −1Ayi−

1
2
tr ATΨ −1A

N

n= 1

yny
T
n

15 44
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Therefore, in the E-step, we may obtain the expected complete data log-likelihood Q as shown
in Equation (15.45).

Q A,Ψ =C−
N

2
log Ψ −

1
2
tr Ψ −1

N

n = 1

xn−μ xn−μ
T +

N

n = 1

xn−μ
TΨ −1AE yn xn

−
1
2
tr ATΨ −1AE yny

T
n xn 15 45

The expected value of yn and yny
T
n conditional on xn are βT xn−μ and Iq−β

TA +βT

xn−μ xn−μ
Tβ respectively. Substituting them in Equation (15.45) yields Equation (15.46),

Q A,Ψ =C−
N

2
log Ψ −

N

2
tr Ψ −1S +Ntr Ψ −1AβTS −

N

2
tr ATΨ −1AΩ 15 46

where Ω= Iq−β
TA + βTSβ.

In the M-step, the factor loading matrix A and the error covariance matrix Ψ can be
re-estimated by solving following Equations (15.47) and (15.48).

∂Q A,Ψ
∂A

=NΨ −1STβ−
N

2
Ψ −1AΩT +Ψ −1AΩ = 0 A= STβΩ−1 15 47

∂Q A,Ψ

∂Ψ −1 =
N

2
Ψ −

N

2
ST +NSTβAT −

N

2
AΩTAT = 0 Ψ = diag S−AβTS 15 48

The complete data log-likelihood log X μ,A,Ψ for the mixture density can be derived as
shown in Equation (15.49),

log X μ,A,Ψ = log
N

n = 1

G

g = 1

τgf xn μg,Ag,Ψ g
zgn

=
N

n = 1

G

g= 1

zgnlog τgf xn μg,Ag,Ψ g

15 49

where f xn μg,Ag,Ψ g is given by Equation (15.50).

f xn μg,Ag,Ψ g =
1

2π M 2 Ψ g
1 2

exp −
1
2

xn−μg−Agyn
T
Ψ −1

g xn−μg−Agyn 15 50

The alternating expectation conditional maximisation (AECM) algorithm was proposed for
fitting this model (Meng and Dyk, 1997). This algorithm is an extension of the EM algorithm
that uses different definitions of missing data at different stages. In the E-step, we find the
expected complete-data log-likelihood is of the form shown in Equation (15.51),
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Q μ,τ =
G

g= 1

N

n = 1

zgnlogτg−
NM

2
log2π−

G

g = 1

1
2

N

n= 1

zgnlog AgAT
g +Ψ g

+
G

g = 1

N

n = 1

zgntr Sg AgAT
g +Ψ g

−1 15 51

Where Equation (15.52) holds.

zgn =
τgf xn μg,Ag,Ψ g

G

j= 1
τjf xn μj,Aj,Ψ j

15 52

and ng =
N

n= 1

zgn. Subsequently, in the M-step, maximising the expected complete data log-

likelihood with respect to μg and τg yields Equations (15.53).

μg =

N

n = 1
zgnxn

N

n = 1
zgn

τg =
ng
N

Sg =
1
ng

N

n = 1

zgn xn−μg xn−μg
T

15 53

At the second stage of theM-step in the AECM algorithm, when estimatingAg andΨ g, both the
cluster labels Z and the latent factor Y are considered as the missing data. The complete data
log-likelihood is mathematically written as Equation (15.54).

log X,Z,Y =
N

n= 1

G

g = 1

zgn logτg + log f xn μg,Ag,Ψ g + log f yn

=C +
G

g= 1

nglogτg−
G

g= 1

ng
2
log Ψ g −

G

g = 1

ng
2
tr Ψ −1

g Sg

+
G

g = 1

N

n = 1

zgn xn−μg
T
Ψ −1

g Agyn−
G

g = 1

1
2
tr AT

gΨ
−1
g Ag

N

n= 1

zgnynyn
T

15 54

It follows that the expected complete data log-likelihood evaluated with μg and τg is given by
Equation (15.55),

Q Ag,Ψ g =C +
G

g = 1

nglogτg +
G

g = 1

ng
2
log Ψ −1

g −
G

g = 1

ng
2
tr Ψ −1

g Sg +
G

g= 1

tr Ψ −1
g Agβ

T
g Sg

−
G

g = 1

1
2
tr AT

gΨ
−1
g AgΩg 15 55
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where βg = AgAT
g +Ψ g

−1
Ag, and Ωg = Iq−β

T
gAg + β

T
gSgβg. When we impose the constraints,

which have been shown in Table 15.2, on Ag and Ψ g, the resulting estimates can be easily
derived from the expression from Q(Ag, Ψ g) given above.

15.2.3 Bayesian Methods

Although non-Bayesian methods, basically ML-based methods, have received extensive atten-
tion for their effectiveness in estimating optimal values of parameters fitting a given dataset,
there are some vital problems with the ML-based methods which limit their practical use in
many applications. First, they produce models that overfit the data and subsequently have sub-
optimal generalisation performance. Second, they cannot be used to learn the structure of
graphical models (considering a graph denoting the conditional dependence structure between
random variables). Third, standard parameter-estimation methods may fail because of singu-
larity, which, in practice, arises most often for models in which the covariance is allowed to
vary between components and for models in which the number of observations is less than
the number of the parameters to be estimated. Bayesian methods provide a solution to the above
problems in principle. They may be regarded as estimating the uncertainty of the model as a
whole and the uncertainty in the estimated parameters themselves. There are three main tech-
niques for Bayesian model-based clustering, namely EM for maximum a posteriori (MAP),
variational Bayes EM (VBEM), and MCMC.

15.2.3.1 EM for MAP

Fraley and Raftery proposed an MAP estimator to replace the ML estimator and developed an
EM algorithm to search for the solution (Fraley and Raftery, 2007). In this framework, a highly
dispersed proper conjugate prior on the parameters was employed to eliminate the failure
caused by singularity.
The Bayesian predictive density for the data is assumed to be of the form shown in

Equation (15.56),

X μg,Σg,τg μg,Σg,τg θ 15 56

where μg,Σg,τg θ is a prior distribution on the parameters μg, Σg, and τg, which involves
other hyperparameters θ. A normal prior on the mean conditional on the covariance matrix was
given by Equation (15.57)

μ Σ μ ,Σ κ

Σ −
1
2exp −

κ

2
tr Σ−1 μ−μ μ−μ T

15 57

and an inverse Wishart prior on the covariance matrix [Equation (15.58)].
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Σ inverseWishart ν ,Λ Σ −
ν +M + 1

2 exp −
1
2
tr Σ−1Λ 15 58

The hyperparameters μ , κ and ν are called the mean, shrinkage and degrees of freedom,
respectively, of the prior distribution. The hyperparameter Λ , which is a matrix, is called
the scale of inverse Wishart prior. This is a conjugate prior for a multivariate normal distribu-
tion because the posterior can also be expressed as the product of a normal distribution and an
inverse Wishart distribution. Under this prior, the EM algorithm for the MAP estimator calcu-
lates zgn in the E-step as shown in Equation (15.59)

zgn =
τgf xn μg,Σg f μg Σg f Σg

G

k = 1
τkf xn μk,Σk f μk Σk f Σk

15 59

where Equation (15.60) holds.

τg =
1
N

N

n = 1

zgn 15 60

In the M-step, the update of mean μg and unconstrained ellipsoidal covariance matrix Σk are
given by Equation (15.61),

μg =
ngxg + κ μ
κ + ng

,Σg =
Λ +

κ ng
κ + ng

xg−μ xg−μ
T
+Wg

ν + ngM +M + 2
15 61

where ng =
N

n = 1
zgn, xg =

N

n= 1
zgnxn ng and Wg =

N

n= 1
zgn xn−μg xn−μg

T
. The other

constrained covariance matrix structures and their derivations, together with the selection of
hyperparameters μ , κ ,ν ,Λ , can be found in Fraley and Raftery (2007).
However, it is worth noting that this Bayesian regularisation method did not solve the

overfitting problem, and it relied on the Bayesian information criterion (BIC), which is a model
selection algorithm.

15.2.3.2 MCMC Methods

Bayesian analysis of a mixture model usually leads to intractable calculations, since the pos-
terior distribution takes into account all the partitions of the sample. MCMC techniques as
approximation methods, which rely on the missing data structure of the mixture model, eval-
uate the posterior distribution and Bayesian estimators by sampling (Diebolt and Robert, 1994).
Richardson and Green (1997) developed reversible jump MCMC (RJMCMC) to estimate the
mixture models with unknown number of components using a series of combine-split moves.
In Richardson and Green (1997), only a univariate normal mixture model was considered.
Stephens proposed an alternative method to RJMCMC for Bayesian analysis of mixture
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models with unknown number of components (Stephens, 2000), which considered both
univariate and bivariate normal mixture models. Dellaportas and Papageorgiou extended
RJMCMC to multivariate normal mixture models (Dellaportas and Papageorgiou, 2006).
Let us start with a univariate normal mixture as studied in Diebolt and Robert (1994). The

likelihood of the mixture model for the dataset X is given by Equation (15.62).

X Θ =
N

n= 1

G

g = 1

τgf xn μg,σg
zgn 15 62

The conjugate prior is ξg, σ
2
g κg for f μg σ

2
g , and an inverse Gamma (IG) distribution

IG νg,S2g for σ2g. Let us assume that the hyperparameters are known. The posterior distribution

of (μg, σg) is given in Equation (15.63).

G

g= 1

κgξg + ngxg
κg + ng

,
σ2g

κg + ng
IG νg + ng,S

2
g + S

2
g +

κgng
κg + ng

ξg−xg
2

15 63

An approximation of the posterior distribution starts with an initial value Θ(0), the algorithm
runs in the following way:

1. Generating z m f z X,Θ m ;

2. Generating Θ m + 1 f Θ X,z m .

Considering the conjugate priors, the mth simulation for posterior distribution f μg,σg,

τg X, z m in the second step is

i. τ m+ 1 Dir α1 + n1,…,αG + nG , where Dir(α1,…, αG) is a Dirichlet distribution;
ii. For g= 1,…,G

Generating σ2g IG νg + ng,S2g + S
2
g +

κgng
κg + ng

N

n= 1

z m
gn xn−ξg

2
;

Generating μg
κgξg +

N

n= 1
z m
gn xn

κg + ng
,
σ m+ 1
g

2

κg + ng
.

However, in the above framework, the number of components was assumed known to the
algorithm, which is not realistic. Richardson and Green considered a fully Bayesian analysis
of mixtures of normal distributions using the RJMCMC approach (Richardson and Green,
1997). Figure 15.3 demonstrates the complete graphical model in a directed acyclic graph,
which is also known as a Bayesian network. Square shapes represent parameters or latent vari-
ables; circle shapes represent hyperparameters. Arrows indicate conditional independencies
between parameters. Therefore, the joint distribution of all variables is then expressed by
the factorisation given in Equation (15.64),
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p λ,δ,η,τ,G,Z,Θ,X = p λ p δ p η p G λ p τ G,δ p Z G,τ p Θ G,η p X Θ,Z 15 64

where η is the set of hyperparameters (α, β, ξ, κ) and Θ denotes (μ, σ). The hyperparameter β is
assume to follow a Gamma distribution with parameters u and v. In contrast with other MCMC
algorithms, RJMCMC employs two extra move types: (1) splitting one mixture component into
two or combining two into one, and (2) the birth or death of an empty component. Dellaportas
and Papageorgiou extended RJMCMC to multivariate normal mixture models (Dellaportas and
Papageorgiou, 2006).

15.2.3.3 Variational Inference

As mentioned in the last subsection, for a fully Bayesian model, in which any unknown para-
meters are given prior distributions and are absorbed into the set of latent variables, sometimes,
especially for many models of practical interest, it is infeasible to evaluate the posterior distri-
bution and to compute expectations with respect to this distribution. Virtually, to cope with this
situation, we resort to approximation schemes. Approximation schemes primarily fall into two
broad classes, according to whether they rely on stochastic or deterministic approximations:
One class is stochastic techniques, such as MCMC which we discussed previously; another
one is variational approximation, which is deterministic (Beal and Ghahramani, 2003; Bishop,
2006). In this subsection, we will discuss variational inference and VBEM algorithms for
Bayesian analysis of mixture models.
Let us denote the set of all latent variables and parameters by Θ, the set of all observed

variables by X. We can compose the log marginal probability using Equation (15.65),

β

u

v

ξ

ĸ

λ

δ τ

G
Z

σ X

μ

α

Figure 15.3 Graphical demonstration of Bayesian analysis of a normal mixture model. Squares
represent parameters and latent variables; circles represent hyperparameters; diamond represents the
observation
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lnp X = q +KL q p 15 65

where Equation (15.66) holds,

q = q Θ ln
p X,Θ
q Θ

dΘ,KL q p = q Θ ln
q Θ
p Θ X

dΘ 15 66

where KL q p denotes Kullback–Leibler (KL) divergence between q(Θ) and p Θ X . There-
fore, maximising (q) is equivalent to minimising the KL divergence between q(Θ) and
p Θ X . (q) is also known as lower bound of log marginal probability ln p(X). Instead of cal-
culating p Θ X directly, an alternative way, in which the family of distributions q(Θ) are
restricted, is considered. Suppose that we partition the elements ofΘ into disjoint groups, which
is denoted as Θj, j = 1,…,J. Then the q distribution factorises as shown in Equation (15.67).

q Θ =
J

j= 1

qj Θj 15 67

Subsequently, we seek for the distributions maximising the lower bound (q). To this end, we
first dissect the dependence of (q) on one of the factors qj(Θj) (qj for the sake of simplicity)
[Equation (15.68)].

q =
j

qj lnp X,Θ −
j

lnqj dΘ

= qj lnp X,Θ
i j

qidΘi dΘj− qjlnqjdΘj +C

= qjlnp X,Θ dΘj− qjlnqjdΘj +C

15 68

where ln p X,Θ = lnp X,Θ
i j
qidΘi =Ei j lnp X,Θ and C is a constant. We may recog-

nise that the first two items in Equation (15.68) are equal to a negative KL divergence.
Maximising (q) is equivalent to minimising the KL divergence between qj and p X,Θ . Thus
we obtain a general expression for the optimal solution q∗j given by Equation (15.69).

q∗j = exp Ei j lnp X,Θ 15 69

Here, let us consider VBEM of GMM for example. Suppose Θ = τ,μ,Σ,z , where z is the
latent variables, τ = τg , μ= μg , Σ = Σg , g = 1,…,G. To formulate the variational treat-
ment of this model, we start with the joint distribution of all the random variables, which is
given by Equation (15.70),

p X,τ,z,μ,Σ = p X z,μ,Σ p z τ p τ p μ Σ p Σ 15 70
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in which many factors are defined in Equation (15.71),

p X z,μ,Σ =
N

n= 1

G

g = 1

xn μg,Σg
zgn 15 71

and the conditional distribution of z, given mixing coefficients τ, in the form shown in
Equation (15.72).

p z τ =
N

n= 1

G

g= 1

τzgng 15 72

Then we introduce priors over parameters τ, μ, Σ. The analysis is considerably simplified if
we choose conjugate prior distribution. Therefore, we choose Dirichlet distribution over the
mixing coefficients τ [Equation (15.73)],

p τ =Dir τ α0 =C α0

G

g= 1

τα0 −1g 15 73

where C α =Γ
G

g = 1
αg Γ α1 Γ αg . We choose an independent Gaussian–Wishart

prior for the mean and covariance of each Gaussian component [Equation (15.74)].

p μ,Σ = p μ Σ p Σ =
G

g = 1

μg m0,Σg κ0 Σ−1
g W0,v0 15 74

We now consider inferring the model using the VBEM algorithm. In the variational Bayes
expectation (VBE) step, the update equation of the log of the optimised factor q(z) is given
by Equation (15.75),

lnq∗ z =Eμ,Σ,τ lnp X,z,μ,Σ,τ +C

=Eτ lnp z τ +Eμ,Σ lnp X z,μ,Σ +C

=
N

n = 1

G

g = 1

zgnlnρgn +C

15 75

where we define ln ρgn in Equation (15.76).

lnρgn =E lnτg −
1
2
E ln Σg −

M

2
ln2π−

1
2
Eμg,Σg xn−μg

TΣ−1
g xn−μg 15 76

Taking the exponential of both sides of Equation (15.75), we obtain Equation (15.77).

q∗ z
N

n = 1

G

g= 1

ρzgngn 15 77
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Requiring that this distribution be normalised, we obtain Equation (15.78),

q∗ z =
N

n = 1

G

g= 1

rzgngn 15 78

where rgn = ρgn
G

j = 1
ρjn. Subsequently, we define three statistics of the observed statistics of

the observed dataset, given by Equations (15.79).

ng =
N

n= 1

rgn; xg =
1
ng

N

n= 1

rgnxn;Sg =
1
ng

N

n= 1

rgn xn−xg xn−xg
T

15 79

In the variational Bayes maximisation (VBM) step, we consider the factorisation shown in
Equation (15.80).

q τ,μ,Σ = q τ
G

g = 1

q μg,Σg 15 80

Since we can have the optimised factor q∗(τ), which is given by Equation (15.81),

q∗ τ = α0−1
G

g= 1

lnτg +
G

g = 1

N

n = 1

rgnlnτg +C 15 81

then taking the exponential of both sides, we recognise q∗(τ) as a Dirichlet distribution
[Equation (15.82)].

q∗ τ =Dir τ α , αg = α0 + nk 15 82

Then, the optimised factor q∗(μg, Σg) can be obtained by using Equation (15.83),

q∗ μg,Σg = μg mg,Σg κg Σ−1
g Wg,vg 15 83

where Equations (15.84) hold.

κg = κ0 + ng

mg =
1
κg

κ0m0 + ngxg

W −1
g =W −1

0 + ngSg +
κ0ng
κ0 + ng

xg−m0 xg−m0
T

vg = v0 + ng

15 84

Therefore, we can further calculate the expectations with respect to the variational distributions
of the parameters as given in Equations (15.85).
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Eμg,Σg xn−μg
TΣ−1

g xn−μg =Mκ−1g + vg xn−mg
T
Wg xn−mg

lnΣ
−1
g =E ln Σ−1

g =
M

i = 1

ψ
vg + 1− i

2
+Mln2 + ln Wg

lnτg =E lnτg =ψ αg −ψ α

15 85

Finally, we can evaluate the lower bound Equation (15.66) straightforwardly as shown in
Equation (15.86),

=
n

q τ,μ,Σ,z ln
p X,τ,μ,Σ,z
q τ,μ,Σ,z

dτdμdΣ

=E lnp X μ,Σ,z +E lnp z τ +E lnp τ +E lnp μ,Σ

−E lnq z −E lnq τ −E lnq μ,Σ

15 86

where Equations (15.87)–(15.92) hold,

E lnp X μ,Σ,z =
1
2

G

g = 1

ng lnΣ
−1
g −Mκ−1g −vgTr SgWg

−
G

g = 1

ngvg xn−mg
T
Wg xn−mg −

M

2
ln2π

G

g= 1

ng

15 87

E lnp z τ =
N

n = 1

G

g = 1

rgnlnτg;

E lnp τ = lnC α0 + α0−1
G

g = 1

lnτg

15 88

E lnp μ,Σ =
1
2

G

g= 1

Mln κ0 2π + lnΣ
−1
g −

Mκ0
κg

−κ0vk mg−m0
T
Wg mg−m0

+GlnB W0, v0 +
v0−M−1

2

G

g = 1

lnΣ
−1
g −

1
2

G

g = 1

vgTr W −1
0 Wg

15 89

E lnq z =
N

n= 1

G

g = 1

rgnlnrgn 15 90

E lnq τ =
G

g = 1

αg−1 lnτg + lnC α 15 91

E lnp μ,Σ =
G

g = 1

1
2
lnΣ

−1
g +

M

2
ln

κg
2π

−
M

2
−H q Σg 15 92
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where B(W0, v0) in Equation (15.89) is defined as given in Equation (15.93),

B W,v = W −v 2 2
vM
2 π

M M−1
4

M

i = 1

Γ
v+ 1− i

2

−1

15 93

and H[q(Σg)] in Equation (15.92) is the entropy of the Wishart distribution, given by
Equation (15.94).

H q Σg = − lnB Wg, vg −
vg−M−1

2
E ln Σ−1

g +
vM

2
15 94

15.3 Infinite Mixture Models

Suppose we are interested in estimating a single distribution from an i.i.d sample xn n= 1,…,N;
non-parametric mixtures assume that observations arise from a function such as that given in
Equation (15.95),

xn k ψ τ dψ 15 95

where k ψ is a given parametric kernel indexed by ψ , and τ is a mixing distribution, which is
assigned a flexible prior. In terms of the assumption imposed on τ, the Bayesian non-parametric
mixture models may be DPMmodels (Rasmussen, 1999; Medvedovic and Sivaganesan, 2002;
Medvedovic, Yeung and Bumgarner, 2004), CRPmodels (Qin, 2006), SBPmodels (Rodriguez
and Dunson, 2011), and so on.

15.3.1 DPM Model

ADPMmodel is also known as an infinite Gaussian mixture model (Rasmussen, 1999).We have
discussed the finite Gaussian mixture model in Section 15.2.1.1, and its formula is written in
Equation (15.2), which implies that the mixture model contains G components and each compo-
nent is a multivariate Gaussian distribution with parameters μg and Σg, g = 1,…,G. All compo-
nents are combined according to a mixing proportion τg g = 1,…,G . The clusters then can be

found by fitting the model as a function of the set of parametersΘ = τg, μg,Σg g = 1, ,G .
We have also discussed the Bayesian framework in Section 15.2.3, which defines prior distri-
butions for all parameters, also including some hyperparameters. A prior over the mixing pro-
portion parameters τ is defined to be a symmetric Dirichlet distribution as the natural conjugate
prior, with concentration parameter α/G as shown in Equation (15.96),

P τ α =
Γ α

Γ α G G

G

g = 1

τα G−1
g 15 96

where α controls the distribution of the prior weight assigned to each cluster and Γ is the
Gamma function. The component label (also known as the indicator variable) zn for each data
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point which takes on integer value g 1,…,G corresponds to the hypothesis that the data
point n belongs to the cluster g. The prior probability is proportional to the mixing proportion
P zn = g τ = τg. Therefore, given the mixing proportions, the prior for the occupation numbers,
Ng, which is the number of members in the cluster g, is multinomial and joint distribution of the
labels becomes as shown in Equation (15.97).

P z1,…,zN τ1,…,τG =
G

g = 1

τNg
g 15 97

The conditional probability of one label given the setting of all other labels after integrating
over all possible settings of the mixing proportion parameters becomes as given in
Equation (15.98).

P zn = g z−n,α = P zn = g z−n,τ P τ z−n,τ dτ =
N−n,g + α G

N−1 + α
15 98

A vague prior of inverse Gamma shape is put on the concentration parameter α to give
Equation (15.99).

P α−1 1,1 P α α− 3
2exp −

1
2α

15 99

Therefore, the likelihood for α may be derived as shown in Equation (15.100).

P α G,N
αG−3 2exp − 1

2α Γ α

Γ N + α
15 100

The conditional posterior for α depends only on the number of observations N, and the number
of components G.
The infinite Gaussian mixture models take the limit G ∞ , and then the conditional

distribution for labels is written as shown in Equation (15.101).

Components whereN−n,g > 0 P zn = g z−n,α =
N−n,g

N−1 +α

All other components P zn zn , n n z−n,α =
α

N−1 + α

15 101

This shows that the probabilities are proportional to the occupation numbers N−n,g. Using these
conditional probabilities, one can Gibbs-sample from the indicator variables efficiently, even
though the model has infinitely many Gaussian clusters. Having integrated out the mixing pro-
portions, one can also Gibbs-sample from all of the remaining parameters of the model, that is
{μ,Σ}. The rest of the MCMC procedure can be found in Rasmussen (1999). Heller and
Ghahramani proposed Bayesian hierarchical clustering (BHC), which can be interpreted as a fast
bottom-up approximate inference method for a DPM model (Heller and Ghahramani, 2005).
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15.3.2 CRP Mixture Model

The Chinese restaurant process (CRP) gets its name because it can be viewed as a sequential
restaurant ‘seating arrangement’ described as follows. Assume a Chinese restaurant with an
infinite number of circular tables, each with infinite capacity, and customers arrive sequentially
at the restaurant and are randomly assigned to a table. A new arriving customer will be seated
according to the current seating arrangement of all previous customers. Imagining that the circular
tables represent partitions {C1,C2,…}, customer r + 1 , r ≥ 1, is seated according to the predic-
tion rule applied to the partition Pr = C1,r,C2,r,…,CG r ,r , corresponding to the seating
arrangement of the first r customers, that is if Pr + 1 is the partition representing the event that
customer r + 1 is seated at a previous table Cg,r, then Pr + 1 occurs with probability
P Pr + 1 =Pr r + 1 Cg,r = P Pr + 1 P Pr = lg,r; while if Pr + 1 =Pr CG Pr + 1 is the event
that customer r + 1 is seated at a new table, then the event Pr + 1 occurs with probability
P Pr + 1 =Pr CG Pr + 1 = l0,r. The CRP is closely connected to the Dirichlet process (DP)
and therefore useful in the application of Bayesian non-parametric methods.
Let us consider a univariate case, whose complete likelihood is given by Equation (15.17).

The parameters Θ in (15.17) include μ, σ2, τ, and z. The prior for cluster assignment is a CRP,
where the probability of joining each existing table is proportional to the size of that table. Since
the seating probability is the product of the prior and the likelihood, which compare the proper-
ties of the new customer and those of the people at the table, the seating process follows a
weighted CRP, and, essentially, the weight is the likelihood ratio of the customer joining
the table versus he/she starts a new one. The whole process can be naturally fit into a Gibbs
sampler framework, such that the memberships can be updated iteratively until convergence.
CRP-based clustering approaches are able to modify the number of components increasingly or
decreasingly to fit the data (Qin, 2006).

15.3.3 SBP Mixture Model

Suppose that we model dataset X using the following model [Equation (15.102)]:

xn F θzn , θ1,…,∞ H , and z1,…,N categorical τ 15 102

Therefore, the SBP defines the infinite model constructively by Equation (15.103),

P =
∞

g= 1

τgδθg 15 103

where τg, called the stick-breaking weight, is defined as τg = ug i< g
1−ui . Having

ug Beta 1−a,b+ ga , for 0 ≤ a < 1 and b > −a yields a generalised two-parameter model.
When a = 0 and b = α, the model results in the DPM. Rodriguez and Dunson (2011) proposed
an approach, called the probit stick-breaking process (PSBP), to construct rich and flexible
families of non-parametric priors that allow for simple computational algorithms. PSBP
uses a stick-breaking construction similar to the one underlying the DP but replaces the
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characteristic beta distribution in the definition of the sticks by probit transformations of normal
random variables. Therefore, the resulting construction for the weights of the process is rem-
iniscent of the continuation ratio probit model popular in survival analysis.

15.4 Discussion

The literature of mixture model clustering methods is extensively rich and is still growing. In
this chapter, we considered as many of the related methods as possible. A summary of mixture
model clustering methods is shown in Table 15.3. We classified mixture model methods into
two large groups, namely finite mixture models and infinite mixture models. Finite mixture

Table 15.3 Summary of mixture model-based clustering algorithms

Mixture models Non-Bayesian Bayesian

Gaussian mixture
models

Dempster et al. (1977); Banfield and
Raftery (1993); Fraley and Raftery
(1999, 2002); Yeung et al. (2001);
Ghosh and Chinnaiyan (2002)

Diebolt and Robert (1994); Richardson
and Green (1997); Roberts et al.
(1998); Stephens (2000); Frühwirth-
Schnatter (2001); Beal and
Ghahramani (2003); Teschendorff
et al. (2005); Dellaportas and
Papageorgiou (2006); Fraley and
Raftery (2007); Geweke (2007)

Mixture of HMMs Smyth (1997); Schliep, Schönhuth and
Steinhoff (2003); Schliep et al. (2005)

Mixture of
t-distributions

Peel and McLachlan (2000);
McLachlan, Bean, and Peel (2002);
Andrews and McNicholas (2011)

Archambeau and Verleysen (2007)

Mixture of factor
analysers

Ghahramani and Hinton (1996);
McLachlan, Peel and Bean (2003);
McNicholas and Murphy (2008);
Zhao, Yu and Jiang (2008); Zhao
and Yu (2008); McNicholas and
Murphy (2010)

Ghahramani and Beal (1999); Utsugi
and Kumagai (2001)

Mixture of common
factor analysers

Baek, McLachlan and Flack (2010);

Mixture of common
t-factor analysers

Baek and McLachlan (2011)

Mixture of
principal
component
analysers

Tipping and Bishop (1997, 1999)

Infinite mixture
models

Rasmussen (1999); Medvedovic
andSivaganesan (2002);Medvedovic,
Yeung and Bumgarner (2004); Qin
(2006); Rodriguez andDunson (2011)
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models were further classified into Bayesian and non-Bayesian (or frequentist). Infinite
mixture models are also known as Bayesian non-parametric models. Therefore, this chapter
covered three very important categories of statistical model clustering, including frequentist
parametric models, Bayesian parametric models, and Bayesian non-parametric models. We
spent a large proportion of space to introduce finite mixture models, which does not mean that
finite mixture models are more important than infinite mixture models; on the contrary infinite
mixture models are receiving more and more attention. Infinite mixture models have a similar
representation to finite mixture models except for the limit G ∞. Almost all Bayesian
mixture models can be solved using the MCMC algorithm. Thus, we avoid the redundancy
by only introducing the infinite mixture models briefly. Interested readers are strongly referred
to respective references.
A collection of publicly accessible resources for mixture model-based clustering is listed

in Table 15.4. The applications of mixture model-based clustering in bioinformatics will be
discussed in Chapter 19.
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16
Graph Clustering

16.1 Introduction

Graph clustering, also known as graph theoretic clustering or graph-based clustering, has
attracted a great deal of research interest in the bioinformatics field because a wealth of
information is available on interactions involving proteins, genes and metabolites, that is small
molecules. In studies of molecular and cellular biology, the graph representation has been
widely used in the analysis of protein–protein interaction networks, gene regulatory networks
and metabolic networks. Figure 16.1 shows an example of metabolic network of worm
Caenorhabditis elegans (Jeong et al., 2000).

In network science, a cluster is also called a community, and graph clustering algorithms are
also known as the algorithms for community detection. Traditionally, hierarchical clustering
and partitional clustering were employed in the graph partitioning. However, considering that
the problems of graph clustering are much different from those of other clusterings, some
specific graph clustering algorithms other than traditional and general clustering algorithms
are highly desired. The objective of this chapter is to overview the family of graph clustering
algorithms, including their problems, principles and applications. Since the field of network
science has a rich literature and is still growing rapidly, it is impossible for us to include every
algorithm in the field in this single chapter. Wewill focus on basic concepts andmethodologies,
briefly review some applications in bioinformatics, and introduce some available online
resources for graph clustering and network analysis.
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16.2 Basic Definitions

16.2.1 Graph and Adjacency Matrix

A graph G is a pair of sets (V, E), where V is a set of vertices or nodes and E contains the pair-
wise edges of vertices in V. The elements in E are called edges or links, and the two vertices
connected by an edge are called endpoints. In an undirected graph, each edge is an unordered
pair {v,w}. If each edge is an ordered pair of vertices, the graph is called a directed graph.
A graph is called a weighted graph if a real number (weight) is assigned to each edge; on
the other hand, it is an unweighted graph if all edges are equal. If the set of vertices contains
two subsets and , and there is no interaction between and , the graph is called a
bipartite graph.
The number of vertices and edges of a graph are NV = V and NE = E , respectively.

A graph G = V ,E is a sub-graph of G= V,E if V ⊂V and E ⊂E. A partition of the vertex
setV in two subsetsV and V−V is called a cut. The maximum size of a graph equals the total
number of unordered pairs of vertices, NV NV −1 2. If NE =NV NV −1 2, the graph is a
clique (or complete graph). Two vertices are neighbours or adjacent if they are connected
by an edge.
The whole topology of a graph of size NV is entailed in an adjacency matrix A, which is an

NV ×NV matrix whose element aij equalswij representing the weight of the edge joining vertices
i and j. Generally, the weight may have two entirely opposite connotations; for example, the
weight may be the distance between two vertices; on the other hand, the weight may be the
similarity of two vertices. Throughout this chapter, we specify that the weight that we refer
to measures how similar two vertices are and how closely they are connected. The larger
the weight is, more similar the two vertices are and the closer they are connected. If wij is zero,

Figure 16.1 Example of metabolic network of the worm Caenorhabditis elegans. This dataset was
originally reported by Jeong et al. (2000), and was analysed by Duch and Arenas (2005)
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it means that vertices i and j are not connected at all. Mathematically, the adjacency matrix A is
given by Equation (16.1),

aij =
wij if i is adjacent to j

0 otherwise
16 1

which implies that A is a symmetric matrix because the semantic interpretation of adjacency is
a symmetric concept. Therefore, the adjacency matrix is not suitable to describe the directed
graph and bipartite graph. An incident matrix B was introduced to describe the asymmetric
graph (Newman, 2010), which is mathematically expressed as Equation (16.2).

bij =
wij if i is incident to j

0 otherwise
16 2

The incident matrix for the directed graph is also an NV ×NV matrix, whose rows, however,
represent the vertices at which the edges begin and whose columns represent the vertices at

which the edges end. For a bipartite graph, the incident matrix is an NV ×NV matrix, whose
rows represent the vertices in subset and columns represent the vertices in subset .

16.2.2 Measures and Metrics

The degree of a vertex i, denoted by di, is the number of its neighbours, which is written as
shown in Equation (16.3).

di =
NV

j = 1

aij 16 3

For a directed graph, one distinguishes two types of degree for a vertex i: the in-degree dIi and
the out-degree dOi . The in-degree is the number of edges beginning at the vertex i, and the
out-degree is the number of edges ending at the vertex i. They can be written as shown in
Equations (16.4).

dIi =
NV

j= 1

bji, d
O
i =

NV

j = 1

bij 16 4

A path is a sub-graph ℘= V ℘ ,E ℘ , in which V ℘ ⊂V and E ℘ ⊂E. Suppose that V
(℘) contains {v1, v2,…, vl}, l vertices, and then E(℘) has v1v2,v2v3,…,vl−1vl . The length of
a path ℘ is the sum of the reciprocal of weight of all the edges in E(℘), which is given by
Equation (16.5),

L ℘ =
i, j V ℘

1
wα
ij

16 5

where α is a positive tuning parameter to be set according to the application and has the value 1
for general cases. Paths allow one to define the concept of connectivity and distance in graphs.
A graph is connected if there is at least one path connecting any given pair of vertices in the
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graph. A shortest path s(i, j), also known as a geodesic, between two vertices i and j of a
graph, is a path of minimal length. The shortest path s(i, j) can be written as given in
Equation (16.6),

s i, j =min L ℘ij 16 6

where ℘ij denote all paths connecting vertices i and j. Such a minimal length is the distance
between two vertices. The diameter of a connected graph is the maximal distance between two
vertices. A cycle graph or cyclic graph is a graph that consists of some number of vertices
connected in a closed chain. A graph is called a forest if it has no cycle in it. A connected forest
is called a tree. The tree concept is very important in graph theory. There is only one path from a
vertex to any other vertex in a tree because if there were at least two paths between the same pair
of vertices they would form a cycle, which is against the acyclic definition of a tree. Moreover,
the number of edges of a tree with NV vertices is NV −1 . Therefore, a tree is a minimally
connected, maximally acyclic graph of a given size: If any edge of a tree is removed, it would
become disconnected in two parts; if a new edge is added, there would be at least one cycle.
Every connected graph contains a spanning tree; that is, a tree sharing all vertices of the graph.
On weighted graphs, one can define a minimum (maximum) spanning tree; that is, a spanning
tree such that the sum of the weights on the edges is minimal (maximal).
Suppose that we are given a subgraph G of graph G, with G = nc, and G =NV vertices.

The intra-cluster density is defined as a ratio between the number of internal edges of G and
the number of all possible internal edges [Equation (16.7)],

δint G =
ec

nc nc−1 2
16 7

where ec is the number of internal edges of subgraph G . The inter-cluster density of a given
clustering of a graph G in K clusters {C1,…, CK} is given by Equation (16.8).

δint G C1,…,CK =
1
K

K

k = 1

δint Ck 16 8

Similarly, the inter-cluster density can be defined as shown in Equation (16.9),

δext G =
ec

nc n−nc
16 9

where ec is the number of edges running from the vertices of G to the rest of the graph G . The
value of δext(G ) reflects the ratio between the number of edges running from the vertices ofG
to G and the maximum possible number of inter-cluster edges.
Centrality of a vertex reflects its importance within a network. It has been the key statistics in

the analysis of networks; for instance, a high centrality measure may indicate that the given
vertex either is very influential and active in the network or is located in a central position
in the network and is highly connected with others. There are many classic centrality measures,
including degree, closeness and betweenness (Newman, 2010). Degree centrality is the
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simplest indicator, which is the degree of the vertex. A generalised degree centrality for a
weighted network, which combines both degree and strength, is given by Equation (16.10),

CD i = ki ×
di
ki

α

16 10

where ki is the number of edges connected with the ith vertex, di is the degree of the ith
vertex, and α is a positive tuning parameter to be set according to the application. Both the
closeness and betweenness centrality measures rely on the measure of shortest path among
nodes. The closeness centrality is given by Equation (16.11).

CC i =
NV

j

s i, j

−1

16 11

Betweenness centrality is mathematically written as given in Equation (16.12),

CB i =
j i k

gjk i

gjk
16 12

where gjk(i) is the number of shortest paths between the jth and kth vertices thought the ith ver-
tices and gjk is the total number of shortest paths between the jth and kth vertices. Note that
gjk(i)/gjk has to be set to zero if gjk is zero.
A degree matrix, D, is a diagonal matrix, whose element dii is the degree of the vertex i,

denoted as diag d1,…,dNV . A very important matrix is the Laplacian matrix L=D−A. This
form of Laplacian is usually referred to as unnormalised Laplacian. A normalised Laplacian

usually has twomain form: Lsym =D−1 2LD−1 2 and Lrw =D−1L = I−D−1A. The matrix Lsym is
symmetric, while Lrw is asymmetric. The Laplacian is one of most studied matrices in graph
theoretical research. The fact that the sum of the elements of each row of the Laplacian is zero
implies that it always has at least one zero eigenvalue, corresponding to the eigenvector with all
ones. Interestingly, L (both unnormalised and normalised) has as many zero eigenvalues as the
number of connected components in the graph. Eigenvectors of Laplacian matrices have
been used in spectral clustering, which we will discuss in the next section. In particular,
the eigenvector corresponding to the second smallest eigenvalue, called Fiedler vector, is
commonly used in graph partitioning.
Modularity, proposed by Newman and Girvan (2004), is the most popular quality function

for graph clustering or community detection. The job of community detection is to divide
network vertices into groups within which the network connections are dense, but between
which they are sparser. Among all community detection algorithms, modularity-optimisation
methods have attracted considerable attention due to its computational efficiency and practical
applicability. The logic behind the modularity methods is that dividing a network into
reasonably good communities will give a high value of the benefit function Q, called modu-
larity. Conceptually, the modularity is the value of the fraction of edges within communities
minus the expected fraction of such edges. The modularity in an undirected unipartite graph
is given by Equation (16.13),
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Q=
1

2NE ij

aij−
didj
2NE

δij 16 13

where δij is Kronecker delta symbol, which is one if the vertices i and j are in the same com-
munity; otherwise it is zero. The matrix expression of modularity leads to another concept,
namely modularity matrix M, defined with each element as shown in Equation (16.14).

Mij = aij−
didj
2NE

16 14

Therefore, the modularity Q is given by Equation (16.15),

Q=
1

2NE
Tr UTMU 16 15

where U is an NV ×Nc index matrix, whose every element is either one, indicating if the vertex
belongs to the community, or zero otherwise. Nc is the number of communities. The modularity
for a directed unipartite graph can be mathematically written as given in Equation (16.16).

Q =
1
NE ij

aij−
dIi d

O
j

NE
δij 16 16

16.2.3 Similarity Matrices

Another important point worth noting is about the difference between the similarity matrix and
the adjacency matrix. Conceptually, they are different: the elements of a similarity matrix are
pairwise similarity between two data objects, which is a quantitative concept; while the
elements of an adjacency matrix indicate the connectivity between vertices and the strength
of the connections, which is a qualitative concept. However, sometimes, the adjacency matrix
can be represented by the similarity matrix when the connectivity information among data
points is not available but the feature data are available, in other words, the adjacency matrix
is inferred from the similarity matrix. Many clustering algorithms, for example, spectral
clustering algorithm and affinity propagation (AP) algorithm, are developed based on the
similarity matrix. Graph partitioning and modularity-based algorithms virtually work on the
adjacency matrix. There are several popular construction techniques to transform a given
set of data points X = xn n = 1,…,N with pairwise similarities sij or pairwise distances dij into
a graph G. When constructing similarity graphs the goal is to model the local neighbourhood
relationships between the data points.
The ε-neighbourhood graph: all data points whose pairwise distances are smaller than ε are

connected. Each data point can be viewed as a vertex. As the distances between all connected
vertices are roughly of the same scale (at most, ε), weighting the edges would not incorporate
more information about the data to the graph. Hence, the ε-neighbourhood graph is usually
considered as an unweighted graph.
The k-nearest neighbour graph: the goal is to connect vertex i with vertex j if vertex j is

among the k-nearest neighbours of vertex i. However, this definition leads to a directed graph,
as the neighbourhood relationship is not symmetric. There are two ways of making this graph
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undirected. The first way is to simply ignore the directions of the edges; that is, we connect
vertices i and j with an undirected edge if vertex i is among the k-nearest neighbours of vertex
j or if vertex j is among the k-nearest neighbours of vertex i. The resulting graph is what is
usually called the k-nearest neighbour graph. The second choice is to connect vertices i and
j if both i is among the k-nearest neighbours of j and vertex j is among the k-nearest neighbours
of vertex i. The resulting graph is called the mutual k-nearest neighbour graph. In both cases,
after connecting the appropriate vertices we weight the edges by the similarity of their
endpoints.
The fully connected graph: Here we simply connect all points with positive similarity

with each other, and we weight all edges by sij. As the graph should represent the local
neighbourhood relationships, this construction is only useful if the similarity function itself
models local neighbourhoods. An example for such a similarity function is the Gaussian
similarity function xi, xj = exp − xi− xj 2 2σ2 , where the parameter controls the width
of the neighbourhoods. This parameter plays a similar role as the parameter ε in case of the
ε-neighbourhood graph.

16.3 Graph Clustering

As we mentioned before, the objective of graph clustering is to look for the community
structure, within which the interconnections are dense, but between which they are sparser.
No quantitative definition of the community, however, is universally accepted, and as a matter
of fact, the definition is highly dependent on the specific problem at hand.

16.3.1 Graph Cut Clustering

The number of edges across communities is called cut size. The goal in graph partitioning is to
minimise the number of edges that cross from one sub-group of vertices to another, usually
posing limits on the number of groups as well as to the relative size of the groups; in other words,
to minimise the cut size, which is mathematically expressed as given in Equation (16.17),

cut Ca,Cb =
u Ca,v Cb

w u,v 16 17

where w(u, v) is the weight of edge linking vertices u and v, which belong to Ca and Cb, respec-
tively. Wu and Leahy proposed a graph clustering algorithm based on minimum cut criterion
(Wu and Leahy, 1993). TheWu–Leahy algorithm partitions a graph into k sub-graphs such that
the total cut size across the sub-graphs is minimised. This problem can be solved efficiently by
recursively finding the minimum cuts that bisect the existing sub-graphs. However, the
Wu–Leahy algorithm often results in a skewed cut; that is, a very small sub-graph is cut away.
Therefore, to circumvent the problem, many constraints have been introduced; for example,
the normalised cut (Ncut) (Shi and Malik, 2000). The Ncut is mathematically written as shown
in Equation (16.18),

ncut Ca,Cb =
cut Ca,Cb

conn Ca,Ca Cb
+

cut Ca,Cb

conn Cb,Ca Cb
16 18
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where conn Ca,Ca Cb = u Ca,v Ca Cb
w u,v is the total connection from nodes in Ca to all

nodes in both Ca and Cb. The Ncut is used as a partition criterion. Because minimising
Ncut exactly is non-deterministic polynomial-time (NP)-complete, an approximate discrete
solution can be found by embedding the criterion in the real value domain.
Suppose that we partition a graph G into Ca and Cb subgraphs, where G =NV . Let

di = jw i, j denote the degree of vertex i, and x be an NV -dimensional indicator vector where

xi = 1 if vertex i is in A , and xi = −1 otherwise. Let D be an NV ×NV diagonal matrix with d on
its diagonal, and A be an NV ×NV adjacency matrix. The Ncut can be rewritten as in
Equation (16.19),

ncut Ca,Cb =
xi > 0,xj < 0

−wijxixj

xi > 0
di

+
xi < 0,xj > 0

−wijxixj

xi < 0
di

=
1 + x T D−A 1 + x

k1TD1
+

1−x T D−A 1−x

1−k 1TD1

=
1 + x −b 1−x T D−A 1 + x −b 1−x

b1TD1

16 19

where k = xi > 0
di idi, and b= k 1−k . Let y= 1 + x −b 1−x , thus ncut(Ca, Cb)

becomes defined as in Equation (16.20),

ncut Ca,Cb =
yT D−A y

yTDy
16 20

and the problem turns to the minimisation of ncut(Ca,Cb) as in Equation (16.21).

min
x

ncut Ca,Cb = min
y

yT D−A y
yTDy

16 21

Then we can minimise the Ncut by solving the generalised eigenvalue system shown in
Equation (16.22).

D−A y = λDy D−
1
2 D−A D−

1
2z = λz, where z=D

1
2y 16 22

As we introduced previously, D− 1
2 D−A D− 1

2 is the normalised Laplacian matrix Lsym.
Thus, the second smallest eigenvector of Lsym, which is known as the Fiedler vector, is the
real-valued solution to the Ncut problem. Then the real valued solution has to be converted
into a discrete form. The algorithm is summarised in Table 16.1.

16.3.2 Spectral Clustering

Spectral clustering is an algorithm which is very close to the graph cut clustering algorithm.
It requires the computation of the first k eigenvectors of a Laplacian matrix (Ng, Jordan and
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Weiss, 2001; Luxburg, 2007). If the graph is large, an exact computation of the eigenvectors is
impossible, as it would require time of the order O N3

V . Fortunately there are approximate
techniques, like the power method or Krylov subspace techniques like the Lanczos method
(Golub and Van, 2012), whose speed depends on the size of the gap between eigenvalues
λk + 1−λk , where λk and λk + 1 are the kth and the (k + 1)th smallest eigenvalue of the matrix.
The algorithm proposed by Ng, Jordan and Weiss (2001) is summarised in Table 16.2.

It is worth noting that Ng et al. employed the normalised adjacency matrixD−1 2AD−1 2, rather
than the normalised Laplacian matrix. In principle, spectral clustering methods require a
Laplacian matrix to be used in the applications (Luxburg, 2007). Furthermore, the choice
of Laplacian matrix matters: if the graph vertices have the same or similar degrees, there is
no substantial difference between the unnormalised and the normalised Laplacian; if there is
large inhomogeneity among the vertex degrees, on the other hand, the choice of the Laplacian
considerably affects the results. In general, a normalised Laplacian is more promising because
the corresponding spectral clustering techniques implicitly impose a double optimisation on the
set of partitions, such that the intra-cluster edge density is high and, at the same time, the inter-
cluster edge density is low. On the other hand, the unnormalised Laplacian is related to the
inter-cluster edge density only. Moreover, unnormalised spectral clustering does not always
converge, and sometimes yields trivial partitions inwhich one ormore clusters consist of a single
vertex. Of the normalised Laplacian, Lrw is more reliable than Lsym because the eigenvectors of

Table 16.1 Summary of the normalised cut graph partitioning algorithm

Step 1. Reform the dataset into a weighted graph G= V ,E , and the adjacency matrix A whose each
element denotes the weight on the edge connecting two nodes set to be a measure of the
similarity between the two nodes;

Step 2. Solve D−
1
2 D−A D−

1
2z = λz for eigenvectors with the smallest eigenvalues;

Step 3. Use the eigenvector with the second smallest eigenvalue to bisect the graph;
Step 4. Decide if the current partition should be subdivided and recursively repartition the segmented

parts if necessary;
Step 5. Recursively bisect the partitioned parts if necessary.

Table 16.2 Summary of the spectral clustering algorithm by Ng, Jordan and Weiss (2001)

Step 1. Reform the dataset into a weighted graph G= V ,E , and the adjacency matrix A whose each
element denotes the weight on the edge connecting two nodes set to be a measure of the
similarity between the two nodes;

Step 2. Construct T =D−
1
2AD−

1
2, where D is the degree matrix;

Step 3. Find the k eigenvector of T corresponding to k largest eigenvalues U ℜN × k;
Step 4. Form the matrix Y from U by normalising each row of Y to have unit

length Yij =Uij jU
2
ij

1 2
;

Step 5. Treating each row of Y as a data point and cluster Y into k clusters via k-means or any other
algorithms;

Step 6. Finally, assign the original data point i to the cluster j if and only if the ith point in the matrix Y
was assigned to the cluster j.
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Lrw corresponding to the lowest eigenvalues are cluster indicator vectors; that is, they have equal
non-vanishing entries in correspondence to the vertices of each cluster, and zero elsewhere, if the
clusters are disconnected. The eigenvectors of Lsym, instead, are obtained by (left-) multiplying
those ofLrw by thematrixD1/2. In thisway, eigenvector components corresponding to vertices of
the same cluster are no longer equal; in general, a complication that may induce artefacts in the
spectral clustering procedure.

16.3.3 AP Clustering

The AP clustering algorithm was developed by Frey and Dueck (2007). The AP algorithm
recursively transmits real-valued messages along edges of the network until a good set of
exemplars and corresponding clusters emerges. The AP algorithm takes as input a real-valued
similarity matrix, whose element s(i, k) indicates how well the data point with index k is suited
to be the exemplar for data point i, expressed as s i,k = − xi−xk 2.
One of the features of the AP algorithm is that it does not require the number of clusters.

Instead, AP takes as input a real number s(k, k) for each data point k so that data points with
larger values of s(k, k) are more likely to be chosen as exemplars. These values are referred to as
‘preferences’. Initially, all data points are equally suitable as exemplars, and the preferences are
set to a common value. This shared value could be the median of the input similarities.
The AP algorithm clusters data by passing messages between data points. Two kinds of

messages are passed between data points. One is called ‘responsibility’ r(i, k), sent from data
point i to candidate exemplar point k, which reflects the accumulated evidence for how well
suited point k is to serve as the exemplar for point i, taking into account other potential exem-
plars. Another is called ‘availability’ a(i, k), sent from candidate exemplar point k to point i,
which reflects the accumulated evidence for how appropriate it would be for point i to choose
point k as its exemplar, taking into account the support from other points that point k should be
an exemplar.
The AP algorithm starts with initial settings of two types of messages that availabilities

are set to zeros, a i,k = 0, and the responsibilities are computed using the rule shown in
Equation (16.23).

r i,k s i,k −max
k k

a i,k + s i,k 16 23

For k = i, the self-responsibility r(k, k) is set to the input preference that point k be chosen as
an exemplar s(k, k ), minus the largest of the similarities between point k and all other candidate
exemplars. To gather evidence from data points as to whether each candidate exemplar would
make a good exemplar, the availability is updated by use of Equation (16.24).

a i,k min 0,r k,k +
i i,k

max 0,r i ,k 16 24

It implies that the availability a(i, k) is set to the self-responsibility r(k, k) plus the sum of the
positive responsibilities candidate exemplar k receives from other points. The self-availability
a(k, k) is updated differently by use of Equation (16.25),
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a k,k
i k

max 0,r i ,k 16 25

which reflects accumulated evidence that point k is an exemplar, based on the positive respon-
sibilities sent to candidate exemplar k from other points. The above update rules require only
simple, local computations that are easily implemented, and messages only are exchanged
between pairs of points with known similarities. At any point during the AP algorithm,
availabilities and responsibilities can be combined to identify exemplars. For point i the value
of k that maximises a i,k +r i,k either identifies point i as an exemplar if k = i, or
identifies the data point that is the exemplar for point i. The message-passing procedure
may be terminated after a fixed number of iterations, after changes in the messages fall below
a threshold, or after the local decisions stay constant for some number of iterations.
To evaluate the AP algorithm, we employ a 2-D four-clusters dataset for a demonstrating

example and the clustering results are shown in Figure 16.2. We notice that although the
AP algorithm does not require the number of clusters to be pre-set, its accuracy of estimating
the correct number of clusters is limited. Obviously, in the case shown in this Figure, the
4-cluster dataset was over-clustered into 10 clusters. Nevertheless, the AP algorithm is still
of interest to many fields of research because it reveals the affinity between data points.

–1–1.5 –0.5 0 0.5 1 1.5

1.5

1

0.5

0

–0.5

–1

–1.5

Figure 16.2 Example of 2-D four-clusters data using the AP algorithm. Obviously, the data are
over-clustered by the AP algorithm into 10 clusters.

237Graph Clustering



16.3.4 Modularity-based Clustering

Modularity, which was originally introduced to define a stopping criterion for the graph
clustering algorithm by Newman and Girvan (2004), has rapidly become an essential element
of graph clustering methods. Modularity is by far the most used and best known quality func-
tion. In this section, we shall focus on some basic modularity-based graph clustering techniques
that attempt to optimise modularity directly or indirectly.

16.3.4.1 Greedy Techniques

A greed method of Newman (2004a) was the first method devised to maximise the modularity
of the graph. This algorithm falls in the general category of agglomerative hierarchical
clustering methods. It starts with a state in which every vertex is a community with a sole
member; that is, there are NV communities. These communities are repeatedly joined together
in pairs, choosing at each step the connection that results in the greatest increase (or smallest
decrease) in modularity function, which was defined in Equation (16.13). Like a hierarchical
clustering algorithm, the algorithm produces a dendrogram, which shows the order of the joins.
Cuts through the dendrogram at different levels give divisions of the network into larger or
smaller numbers of communities. The best cut that results in the maximal value of modularity,
therefore, can be found.
Let eij be one-half of the fraction of edges in the network that connect vertices in group i to

those in group j. Let gi be the fraction of all ends of edges that attached to vertices in group i,
where gi can be calculated straightforwardly by gi = jeij. Thus, the modularity can be rewrit-

ten as in Equation (16.26).

Q =
i

eii−gi
2 16 26

Only those pairs of vertices between which there are edges are considered in the joining
process. The change in Q upon joining two communities is given by Equation (16.27).

ΔQ = 2 eij−gigj 16 27

The entire algorithm runs in the worst case in time NV NE +NV or N2
V in sparse

graph, much faster than a previous algorithm based on betweenness, which runs in time
NEN2

V or N3
V .

16.3.4.2 Spectral Techniques

Modularity can be optimised using eigenvalues and eigenvectors of a spectral matrix, known as
a modularity matrix, whose element was written as shown in Equation (16.14) (Newman,
2006). Suppose that a given vector s be the vector representing any partition of the graph in
two clusters Ca and Cb: si = 1 if vertex i belongs to Ca; si = −1, if vertex j belongs to Cb. Thus
Equation (16.15) can be rewritten as Equation (16.28).

Q =
1

4NE ij

aij−
didj
2NE

sisj + 1 =
1

4NE
sTMs 16 28
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In the above expression the vector s can be decomposed on the basis of eigenvectors ui of the
modularity matrix s= iαiui; thus we can further rewrite modularity function Q as shown in
Equation (16.29),

Q =
1

4NE

NV

i = 1

uT
i s

2
βi 16 29

where βi is the eigenvalue ofM corresponding to the eigenvector ui and the eigenvalues are in
decreasing order, β1 ≥ β2,…, ≥ βNV

. Maximising the modularity by choosing an appropriate
division of the network is equivalent to that by choosing the value of the index vector s parallel
to the leading eigenvector u1. There is a constraint on the problem imposed by the restriction of
the elements of s to value ±1, which means that we cannot choose s parallel to u1. Nevertheless,
we can choose s as close to parallel as possible: the vertices with positive components in u1
are all in one group, the others in the other group, that is, set si = +1 if the corresponding
element of u1 is positive and si = −1 otherwise. However, it may happen that there is no positive
eigenvalue of the modularity matrix. In this case, the leading eigenvector is an all-one vector,
corresponding to all vertices in a single group together. This is precisely correct since in this
case the algorithm tells the fact that there is no division of the network resulting in positive
modularity.
The standard approach to cluster the network into more than two clusters is to repeat the

above division of a large network into two small sub-networks. In doing so it is crucial to note
that it is not correct, after first dividing a network in two, to simply delete the edges falling
between the two parts and then apply the algorithm again to each sub-graph. This is because
the degrees appearing in the definition [Equation (16.13)] of the modularity will change
if edges are deleted, and any subsequent maximisation of modularity would thus maximise
the wrong quantity. Instead, the correct approach is to write the additional contribution ΔQ
to the modularity upon further dividing a group g of size ng in two as given in Equation (16.30),

ΔQ=
1

4NE
sTgMgsg 16 30

where Mg i, j =Mij−δij k gMik , where i, j g, Mg is an ng × ng matrix, and sg is an ng × 1

index vector. If the leading eigenvalue is zero, then the sub-graph is indivisible. This feature
can be conveniently employed as a termination rule. The complete algorithm is summarised in
Table 16.3.

Table 16.3 Summary of spectral modularity optimisation algorithm by Newman (2006)

Step 1. Construct the modularity matrix as shown in Equation (16.14);
Step 2. Find its leading (most positive) eigenvalue and the corresponding eigenvector u1;
Step 3. Divide the network into two parts according to the signs of the elements of this vector;
Step 4. Repeat the process in Steps 2 and 3 for each of the parts, using the generalised modularity matrix

as shown in Equation (16.30);
Step 5. If at any stage a proposed split makes a zero or negative contribution to the total modularity,

leave the corresponding sub-graph undivided. When the entire network has been decomposed
into indivisible sub-graphs in this way, the algorithm ends.
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The community detected by Newman (2006) can be further fine-tuned by the vertex-moving
method to reach the best possible modularity value. The whole procedure is repeated to
subdivide the network until every remaining sub-graph is indivisible, and no further
improvement in the modularity is possible.

16.3.4.3 Modifications

Since there are many types of networks, for example weighted networks, directed networks and
bipartite networks, several modifications and extensions of modularity optimisation algorithms
have been developed for various specific networks.
For weighted networks, a modularity optimisation algorithm can be easily extended to

weighted edges (Newman, 2004b). The modularity in Equation (16.13) can be rewritten as
Equation (16.31),

Qw =
1
2W

ij

aij−
didj
2W

δij 16 31

where W is the sum of the weights of all the edges, aij =wij, and di = jwij, dj = iwij. In this
way, one could derive the corresponding weighted modularity and use it to detect communities,
with a potentially better exploitation of the structural information of the graph as compared with
standard modularity.
The modularity optimisation algorithm has also been straightforwardly extended to directed

networks (Leicht and Newman, 2008). Because if an edge is directed, the probability that it will
be oriented in either of the two possible directions depends on the in- and out-degrees of the end
vertices. Therefore, the expression of modularity for directed networks is expressed
as Equation (16.16), and the modularity for weighted directed networks is expressed as
Equation (16.32).

Qwd =
1
W

ij

aij−
dIi d

O
j

W
δij 16 32

Modularity for bipartite networks has also been developed (Barber, 2007; Guimerà, Sales-
Pardo and Amaral, 2007). In Barber (2007), suppose that there are two classes of vertices with
p and q vertices, respectively; Barber developed a modularity matrix for bipartite networks as
Mb =B−P, where B has a block off-diagonal form of the type shown in Equation (16.33),

B =
0p × p Bp × q

BT
p× q 0p × p

16 33

where Bp× q is the incident matrix, 0p × p is the all-zero matrix. Similarly, P is also a block
off-diagonal matrix as shown in Equation (16.34),

P=
0p × p Pp × q

PT
p × q 0p× p

16 34
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where Pp× q is the expected probability matrix in the null model. However, when the number
of clusters is unknown, the performance of spectral optimisation of modularity worsens.
Therefore, Barber proposed a different optimisation technique, called bipartite recursively
induced modules (BRIM), based on the bipartite nature of the graph. The vertices of a bipartite
network can be partitioned into two disjoint sets such that no two vertices within the same set
are adjacent; that is, two sets can be assigned one of two colours, say red and blue, with no
adjacent vertices bearing the same colour. The algorithm is based on the special expression
of modularity for the bipartite case, for which once the partition of the red or the blue vertices
is known, it is easy to get the partition of the other vertex class that yields the maximum
modularity. Therefore, one starts from an arbitrary partition in c clusters of, say, the blue
vertices, and recovers the partition of the red vertices, which is in turn used as input to get
a better partition of the blue vertices, and so on until modularity converges. BRIM does not
predict the number of clusters c of the graph, but one can obtain good estimates for it by
exploring different values with a simple bisection approach. Another interesting extension
of modularity for bipartite networks was introduced by Guimerà, Sales-Pardo and Amaral
(2007). Let us call the two classes of vertices actors and teams, and indicate with ti the degree
of actor i and ma the degree of team a. The null model graphs are random graphs with the same
expected degrees for the vertices, as usual. The bipartite modularity for a partition℘ is given by
Equation (16.35),

Qb ℘ =
nc

c = 1

i j c
aij

a
ma ma−1

−
i j c

tij

a
ma

2 16 35

where nc is the number of communities.
There are also many other modifications and extensions. Because of the limitations on space,

we cannot detail them all here. Readers who are interested may be referred to the more
comprehensive review (Fortunato, 2010).

16.3.4.4 Limitations

The first important question is about the value of the maximum modularity. The modularity
maximisation algorithms are all based on a statement that the existence of modules in complex
networks may result in a large enough modularity, which implies that random graphs have low
modularity. However, it has been reported by Guimerà, Sales-Pardo and Nunes (2004) that a
large value for the modularity maximum does not necessarily mean that a graph has community
structure. Random graphs are supposed to have no community structure, while they may have
partitions that themselves have large modularity values. This is due to fluctuations in the
distribution of edges in the graph, which may be inhomogeneous even if the linking probability
is constant, as in Erdős–Rényi graphs. Therefore, the maximummodularity of a graph reveals a
significant community structure only if it is appreciably larger than the maximummodularity of
random graphs of the same size and expected degree sequence. The significance of the
maximum modularity for a graph can be calculated by testing it with the maximum modularity
for many realisations of a null model, which is obtained from the original graph by randomly
rewiring its edges. The average modularity Q and the standard deviation σQ of the results
can be calculated. The statistical significance of the maximum modularity Qmax is indicated
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by the distance ofQmax from the null model average modularityQ in units of standard deviation
σQ; that is, by the z-score, calculated using Equation (16.36).

z=
Qmax−Q

σQ
16 36

If z 1, Qmax indicates strong community structure.
Another issue, raised by Fortunato and Barthelemy (2007), is more fundamental since it

affects the capability of modularity as a measure to assess the quality of partitions. In Fortunato
and Barthelemy (2007), it was pointed out that modularity optimisation has a resolution limit
that may prevent it from detecting clusters which are comparatively small with respect to the
graph as a whole. The resolution limit comes from the very definition of modularity, in partic-
ular from its null model. The weak point of the null model is the implicit assumption that each
vertex can interact with every other vertex, which implies that each part of the graph knows
about everything else. This is certainly not true for large systems. A possible way to go around
the resolution-limit problem could be to perform further subdivisions of the clusters obtained
from modularity optimisation, in order to eliminate possible artificial mergers of communities.

16.3.5 Multilevel Graph Partitioning and Hypergraph Partitioning

Karypis and Kumar proposed a multilevel graph partition algorithm, called METIS1

(Karypis and Kumar, 1995, 1998). The basic idea behind the multilevel graph partition
algorithms implemented in METIS is that the graph is coarsened down to a small portion of
vertices in the first place, then a bisection of this much smaller graph is done, and finally
the partition is projected back towards the original graph by iteratively refining the partition,
which is called the uncoarsening phase. During the coarsening phase, a sequence of
smaller graphs Gl = Vl,El is constructed from the original graph G0 = V0,E0 such that
Vl < Vl−1 . Graph Gl is constructed from Gl−1 by finding a maximal matching of Gl and
collapsing together the vertices that are incident on each edge of the matching. When vertices
v,u Vl−1 are collapsed to find vertex w Vl, the weight of vertex w is set equal to the sum of
the weights of vertices v and u, while the edges incident on w are set equal to the union of the
edges incident on v and u minus the edge (u,v). If there is an edge that is incident to both on
v and u, then the weight of this edge is set equal to the sum of the weights of these edges.
Therefore, the weights of both vertices and edges increase during the coarsening process.
Matching not only is essential for the coarsening level but also greatly affects the quality of
the bisection and the time required during the uncoarsening phase. Maximal matching can
be computed in many different ways. We only briefly describe one matching scheme
implemented in METIS, called heavy-edge matching (HEM). Readers who are interested in
other matching schemes may be referred to Karypis and Kumar (1998). HEM computes a
matching Ml, such that the weight of edges in Ml is high. The HEM is computed using a
randomised algorithm. The vertices are visited in a random order. HEM matches a vertex with
the unmatched vertex that is connected with the heavier edge. The second phase of METIS is to
compute a minimum edge-cut bisection of the coarse graph Gl such that each part contains

1
‘Metis’ is the Greek word for wisdom. Metis was a titaness in Greek mythology.
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roughly half the vertex weight of the original graph. A partition of Gl can be obtained using
various algorithms such as spectral bisection or graph cut, which we have discussed previously.
Since the size of the coarse graph Gl is small, the computation in this phase is light. In the last
uncoarsening phase, the partition of the coarse graph Gl is projected back to the original graph
by going through Gl−1, Gl−2, …, G0. After projecting a partition, a partition-refinement
algorithm is used. The basic purpose of a partition-refinement algorithm is to select two subsets
of vertices, one from each part such that the resulting partition has a smaller edge-cut when
swapping them.
Karypis et al. further extended METIS to solve the hypergraph partitioning problem

(Karypis et al., 1999). The hypergraph partitioning problem is to partition the vertices of a
hypergraph into k roughly equal parts, such that the number of hyperedges connecting vertices
in different parts is minimised. The extended multilevel hypergraph partitioning algorithm is
named HMETIS.

16.3.6 Markov Cluster Algorithm

The Markov clustering (MCL) algorithm was designed specifically for simple graphs and
weighted graphs (van Dongen, 1998). It was extended to TRIBE-MCL, which was used to
detect protein families in large databases based on domain architecture or the presence of
sequence motifs (Enright, van Dongen and Ouzounis, 2002). Natural clusters in a graph are
characterised by the presence of many edges between the members of that cluster, and one
expects that the number of ‘higher-length’ paths between two arbitrary nodes in the cluster
is high. Particularly, this number should be higher than the number of node pairs lying in dif-
ferent natural clusters. The MCL algorithm found cluster structure in graphs by a mathematical
bootstrapping procedure. The process deterministically computed the probabilities of random
walks through the similarity graph, and used two operators transforming one set of probabilities
into another. It did so by capturing the mathematical concept of random walks on a graph. The
MCL algorithm simulated random walks within a graph by alternation of two operators called
expansion and inflation. Expansion coincided with taking the power of a stochastic matrix
using the normal matrix product. Inflation corresponded with taking the Hadamard power
of a matrix, followed by a scaling step, such that the resulting matrix is stochastic; that is,
the matrix elements correspond to probability values. It did not contain high-level procedural
rules for the assembling, splitting or joining of groups.

16.4 Resources

There are many platforms and tools existing to analyse and visualise the graphs and networks.
First of all, we summarise the file formats used to store graphs and networks in Table 16.4.
For visualisation tools, besides the software tools listed in Table 16.4, namely Pajek, Graphviz
and UCINET, there are some other software tools, which are widely used for complex network
analysis. We recommend Gephi, which is an open-source and free network analysis and visua-
lisation softwarepackagewritten in Javaon theNetBeans platform, initially developedby students
of the University of Technology of Compiègne in France. Gephi supports most formats listed in
Table 16.4 except XGMML and GXL. Cytoscape is another option, which is an open-source
bioinformatics software platform for visualisingmolecular interaction networks and integrating
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with gene expression profiles and other state data. Cytoscape is also written in Java and it
supports GML, XGMML and text files (including CSV and delimited text table).
For analysing the numerical network data, besides Gephi, Cytoscape and their plugins,

which are open source, there are some resources available online. The first is the MIT Network
Analysis Toolbox for MATLAB, which is downloadable from the link http://strategic.mit.edu/
downloads.php?page=matlab_networks. The second is Lev Muchnik’s Complex Network
Toolbox for MATLAB, which is available from http://www.levmuchnik.net/Content/Net-
works/ComplexNetworksPackage.html. However, MATLAB itself is a commercial software,
which requires a licence. There is another commercial software, called MATHEMATICA,
which also has a package to deal with complex networks.

16.5 Discussion

Graph clustering is an extremely important clustering family in the literature. As we introduced
before, data objects can be organised into a matrix (either adjacency matrix or similarity
matrix), which can be presented as a graph. To cluster such a graph, there are many different
types of graph clustering methods, namely graph cut methods, spectral-based methods, affinity
propagation methods, modularity-based methods, and hypergraph methods. In these methods,
both feature-based data and relation-based data can be clustered, unlike other clustering
methods which are unable to cluster relational data. Therefore, graph clustering has been
widely used in network analysis, including gene co-expression networks (Xu, Olman and
Xu, 2002; Wilkinson and Huberman, 2004), gene regulatory networks (Basso et al., 2005),
protein-interaction networks (Rives and Galitski, 2003; Spirin and Mirny, 2003;
Dunn, Dudbridge and Sanderson, 2005; Altaf-Ul-Amin et al., 2006; Chen and Yuan, 2006;

Table 16.4 Summary of file formats as a storage of graphs and network

Formats
Filename
extension Comments

GraphML .graphml An XML-based file format for graphs.
XGMML .xml (The eXtensible Graph Markup and Modeling Language) is an XML

application based on GML which is used for graph description.
Pajek NET .net Pajek (Slovene word for Spider) is a program, for Windows, for

analysis and visualisation of large networks.
Graphlet GML .gml Graphlet is GML graph data format. GML is an acronym derived from

Graph Modelling Language.
Graphviz DOT .dot DOT is the text file format of the suite GraphViz.
CSV .csv A comma-separated values (CSV) (also sometimes called

character-separated values) file stores tabular data in plain-text form.
UCINET DL .dl UCINET DL format is the most common file format used by the

UCINET package. UCINET 6 for Windows is a software package
for the analysis of social network data.

GXL .gxl GXL (Graph eXchange Language) is designed to be a standard
exchange format for graphs.

Text .txt Delimited text table.
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Farutin et al., 2006; Dittrich et al., 2008), and metabolic networks (Guimerà and Nunes, 2005).
In Table 16.4 we present a summary of file formats used to store graphs and network.
In Table 16.5, we summarise some graph clustering algorithms mentioned in this chapter.

Some of them have publicly accessible software. We will discuss more about these applications
in Chapter 19.
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17
Consensus Clustering

17.1 Introduction

In the previous chapters, we have introduced many distinct clustering families. Those cluster-
ing algorithms have been employed in various applications in many fields. However as is
known, there is no clustering method capable of correctly finding the underlying clustering
structure for all datasets. Naturally, this leads to a question: given an unknown dataset, how
can we decide which clustering algorithmwe should use?Moreover, some stochastic clustering
algorithms for the same dataset may produce different clustering results with different initia-
lisation parameters. The question further becomes: which clustering result should we trust? In
clustering analysis, one solution to the question is the use of numerical clustering validation
algorithms, which assess the quality of clustering results in terms of many criteria. We will
discuss numerical clustering validation in Chapter 20. Since it is also true that no single clus-
tering validation algorithm has been claimed to impartially evaluate the results of any clustering
algorithm, the use of clustering validation is not an overwhelmingly reliable solution.
An alternative solution for the above question is to combine different clustering results, also

known as ensemble clustering, consensus clustering or cluster aggregation. Ensemble cluster-
ing formalises the idea that combining different clusterings into a single representative or
consensus result would emphasise the common organisation in the different clustering results.
Ensemble clustering has attracted a lot of interest during the past decade. Many ensemble cluster-
ing algorithms have been proposed in the literature and have thereafter been reviewed thoroughly
in several good survey papers (Ghaemi et al., 2009; Li, Ogihara and Ma, 2010; Vega-Pons and
Ruiz-Shulcloper, 2011). Ensemble clustering is expected to possess a set of properties; for exam-
ple, it has to provide more robust, more novel and more stable clustering results than the single
clustering algorithms (Ghaemi et al., 2009). However, it is not necessarily true for ensemble clus-
tering to have these properties because even the natural structure or the ground truth of the dataset
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may not be the best result (Vega-Pons and Ruiz-Shulcloper, 2011). Only one fact can be ensured,
which is that the consensus of all clustering algorithms may compensate for possible errors
by individual algorithms, and the final clustering result is more statistically reliable than any
single one.
It has been widely accepted that ensemble clustering consists of two principal steps: the first is

the generation step where the creation of a set of partitions of the given dataset happens, and the
second is the consensus function,where a new partition, which is the integration of all partitions,
is computed. Consensus function is the main step in ensemble clustering. The great challenge
in ensemble clustering is the definition of an appropriate consensus function (Vega-Pons and
Ruiz-Shulcloper, 2011). The common taxonomy is to classify ensemble clustering algorithms
in terms of consensus function into two large classes: one is called object co-occurrence
approach, and the other is called median partition approach (Ghaemi et al., 2009; Li, Ogihara
and Ma, 2010; Vega-Pons and Ruiz-Shulcloper, 2011). Nonetheless, we employ an alternative
taxonomy, which may be clearer. We classify all consensus functions into four classes in terms
of what is the target for comparison in the consensus process: partition–partition (P–P)
comparison, cluster–cluster (C–C) comparison, member-in-cluster (MIC) voting, and member–
member (M–M) co-occurrence. In this chapter, we primarily focus on the basic concepts in each
class, rather than enumerating all ensemble clustering algorithms.

17.2 Overview

The diagram of the general process of ensemble clustering is depicted in Figure 17.1. Every
ensemble clustering method consists of two steps: generation and consensus. Generation
is the first step in ensemble clustering methods, where, in our case, R partitions,
Zr r = 1,…,R , are generated. Partitions are supposed to have k(r) clusters, and the numbers
of clusters for different partitions can be either similar or different. There is no constraint about

Clustering 1

MIC voting

Consensus
clustering

Clustering 2

Clustering R

Generation Consensus

P–P comparison

C–C comparison

M–M co-occurrence

Dataset

Figure 17.1 Diagram of general process of ensemble clustering. The consensus step may have four
different types of consensus functions, namely P–P comparison, C–C comparison, MIC voting, M–M
co-occurrence
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how the partitions are obtained. They could be generated by different clustering algorithms, or
the same clustering algorithm with different parameters initialisation. They even could be from
different datasets for the same set of objects; for example, the same set of genes in different
conditions, tissues, or organisms (Abu-Jamous et al., 2013).
Topchy et al. reported that combining the partitions generated using weak but less expensive

clustering algorithms may achieve comparable or better performance (Topchy, Jain and Punch,
2003, 2005). However, it is worth noting that Topchy et al. drew their conclusions based on
empirical results comparison among their proposed consensus function combining weak parti-
tions, single weak clustering algorithms and other consensus functions combining weak
partitions. In other words, it is not necessarily true that combining weak partitions may provide
better performance than combining better partitions. Nevertheless, the study conducted by Top-
chy et al. provided us a solution that may provide comparable or reasonable performance with
low complexity.
Generally, the main challenge of ensemble clustering is the definition of consensus function.

As shown in Figure 17.1, there are four classes of consensus functions in terms of what is the
target for comparison in the consensus process, namely P–P comparison, C–C comparison,
MIC voting, and M–M co-occurrence. This taxonomy looks different from the popular
two-class taxonomy, namely object co-occurrence and median partition, in Ghaemi et al.
(2009); Vega-Pons and Ruiz-Shulcloper (2011), although there are remarkable resemblances
between them. Basically, P–P comparison is equivalent to median partition, and object co-
occurrence is equivalent to the union of C–C comparison, MIC voting and M–M co-occurrence.
Such four-class taxonomy may more clearly reveal the mechanism of consensus functions.
In the forthcoming section, we will discuss various consensus functions.

17.3 Consensus Functions

17.3.1 P–P Comparison

P–P Comparison approaches, equivalent to median partition approaches, attempt to provide
the solution of an optimisation problem, which maximises the total similarity to the given
partitions. Therefore, the essential part of this class of consensus functions is the P–P similarity/
dissimilarity comparison. The optimisation problem can be written as Equation (17.1),

Z� = argmax
P PX

R

j = 1

Γ Z,Zj 17 1

where Γ , is a similarity measure between partitions. The consensus partition is defined as
the partition that maximises its similarity with all partitions in the ensemble clustering. This
problem implicitly appeared from as early as the late eighteenth century and the first mathe-
matical treatment goes back to 1965 (Filkov and Skiena, 2004). The main theoretical results
have been obtained for the particular case when Γ is the symmetric similarity measure. If Γ
is a dissimilarity measure between partitions, the problem becomes the minimisation of the total
dissimilarity with respect to the cluster ensemble.
There are a lot of similarity and dissimilarity measures between partitions that can be used in

the P–P comparison. A large proportion of these measures can be found in the research of
external clustering validity index, which we will discuss in Chapter 20; for example Rand

249Consensus Clustering



index (RI) (Rand, 1971), adjusted Rand index (ARI) (Hubert and Arabie, 1985), normalised
mutual information (NMI) (Cover and Thomas, 2006), and Jaccard index (JI) (Levandowsky
and Winter, 1971). Besides the above external validity indices, the Mirkin distance is also a
popular measure of partition similarity (Mirkin, 1998).

17.3.1.1 Mirkin Distance-related Methods

Mirkin distance is defined as follows: Given two partitions Z1 and Z2 of the same dataset X,
there are four numbers defined:

• n00: The number of pairs of objects that were clustered in separate clusters in Z1 and also Z2;
• n01: The number of pairs of objects that were clustered in different clusters in Z1, but in the
same cluster in Z2;

• n10: The number of pairs of objects that were clustered in the same cluster in Z1, but in
different clusters in Z2;

• n11: The number of pairs of objects that were clustered in the same clusters in P1 and P2.

Mirkin distance thus is defined as M Z1,Z2 = n01 + n10, which is the symmetric distance,
representing the number of disagreements between the two partitions. Mathematically, consid-
ering two objects u and v, the measure of disagreement between clustering P1 and P2 on u and v
is expressed as given in Equation (17.2).

Muv Z1,Z2 =
1

if Z1 u =Z1 v andZ1 u Z1 v

or Z1 u Z1 v andZ1 u =Z1 v

0 otherwise

17 2

That is, Mirkin distance can be rewritten as given in Equation (17.3).

M Z1,Z2 =
u,v

Muv Z1,Z2 17 3

The P–P comparison problem becomes as shown in Equation (17.4).

Z∗ = argmin
Z PX

R

j = 1

M Z,Zj 17 4

With this definition of distance, the P–P comparison problem appears to be converted to a
graph-based partition problem. Let us define a Mirkin distance matrix of clustering set {Z1, Z2,
…, ZR} asM ZN ×N . We also need to define the weight of edge (u, v) of any pair of clusterings
as Muv and the entry of Mirkin distance is then written as shown in Equation (17.5).

Muv =
R

i, j= 1
Muv Zi,Zj 17 5
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Therefore, the P–P comparison problem is equivalent to correlation clustering,which finds a
partition that minimises the score function (Gionis, Mannila and Tsaparas, 2007), as shown in
Equation (17.6).

Z∗ = argmin
Z PX

u,v
Z u =Z v

Muv +
u,v

Z u Z v

1−Muv 17 6

There have been many algorithms in the literature that provide solutions for this optimisation
problem in a heuristic way (Filkov and Skiena, 2004; Bertolacci and Wirth, 2007; Gionis,
Mannila and Tsaparas, 2007).
The easiest method is Pick-A-Cluster, which simply chooses a partition randomly from the

given clustering set. A slightly more sophisticated method is Best-of-k (BOK) (Filkov and
Skiena, 2004), also known as Best-Clustering (Bertolacci and Wirth, 2007). BOK selects
the partition from the given clustering set closest to all other partitions.
Filkov and Skiena proposed three heuristic algorithms, including BOK (Filkov and Skiena,

2004). One of the other two algorithms is called simulated-annealing-one-element-move
(SAOM), and the other is called best-one-element-move (BOM). SAOM follows the idea of
guessing an initial partition and iteratively changing it by moving one object from one cluster
to another. The initial partition can be the output of Pick-A-Cluster or BOK, or other consensus
function. In SAOM heuristics, the simulated annealing meta-heuristics is applied in order to
avoid the convergence to a local optimum. BOM also starts with an initial partition, which
can be the output of other consensus functions. It also attempts to reach an optimal partition
by moving an object from one cluster to another. The difference between SAOM and
BOM is that a greedy approach is employed in BOM. Every move in BOM attempts to
maximise ΔM=M−M , whereM is the distance before moving andM denotes the dis-
tance after moving.
The Balls Algorithm was proposed by Gionis, Mannila and Tsaparas (2007) to solve the

problem in a graph. Data objects are viewed as vertices in the graph. The intuition of the
algorithm is to find a set of vertices that are close to each other within a cluster and far from
other vertices outside the cluster. The algorithm gradually removes clusters from the graph. The
difficulty lies in finding sush a set in good quality. The algorithm takes all vertices that are
close to a vertex, which form a ball-shaped cluster. More formally, the procedure of the Balls
algorithm is described as follows. First, the algorithm sorts the vertices in increasing order
of the distance to other vertices. Then, at every step, the algorithm picks the first unclustered
vertex in the ordering. A set of vertices B is formed. A parameter α is defined to be a threshold.
If the average distance between the chosen vertex to the set B is smaller than or equal to α, the
the vertex is considered as a member of the set; otherwise, the vertex forms a singleton cluster.
Gionis and colleagues proposed many other heuristic algorithms in Gionis, Mannila and

Tsaparas (2007). One of them is the agglomerative algorithm, which is like the standard aver-
age linkage agglomerative algorithm. Another algorithm is called the furthest algorithm,
which is a top-down heuristics. It starts with all objects in the same single cluster; in each step,
the pair of vertices furthest apart are placed in different clusters and become the centres of the
clusters. The remaining vertices are assigned to the centre that incurs the least cost. At the end of
each step, the cost of the new solution is computed. If it is lower than that of the previous step,
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then the algorithm continues. This procedure is repeated iteratively until there is no improve-
ment in cost reduction any more. The local search algorithm is an application of a local
search heuristic method. It starts with an initial partition, which is iteratively updated. The
cost of moving an object from one cluster to another is computed. Every move of vertex
from one cluster to another yields the minimum cost. The process is iterated until there is
no move that can improve the cost. In particular, the local search algorithm resembles
BOM very much.
Ailon, Charikar and Newman (2008) proposed the CC-Pivot algorithm, which is a three-

approximation algorithm for correlation clustering. The CC-Pivot algorithm attemps to solve
the the problem of aggregating inconsistent information from many different sources in numer-
ous contexts and disciplines. An instance of correlation clustering problem is represented by a
graph with a vertex for each data object and an edge labelled (+) or (−) for each pair of vertices,
indicating that two elements should be in the same or different clusters, respectively. The goal is
to cluster the elements so as to minimise the number of (−) edges within clusters and (+) edges
crossing clusters. Consensus clustering may be an application of correlation clustering, whose
goal is to find a clustering that minimises the number of pairwise disagreements with the given
clusterings. CC-Pivot works as follows: suppose that V contains all vertices; firstly, a random
vertex i is selected as the pivot vertex and two clusters are initialised as C = i , C = ; j V ,
and j i; if i, j E + then vertex j is added toC, otherwise (if i, j E−), vertex j is added toC ;
finally, a subgraph induced byC is sent to CC-Pivot as input and the clustering structure can be
worked out recursively.

17.3.1.2 Information Theory-based Methods

The utility function U(C, Cr) evaluates the quality of a candidate median partition

C= C1,…,CK against the given partitions Cr = C r
1 ,…,C r

k r (Topchy, Jain and Punch,

2005) [Equation (17.7)],

U C,Cr =
K

k = 1

p Ck

k r

j = 1

p C r
j Ck

2
−

k r

j = 1

p C r
j

2
17 7

where p Ck = Ck N, p C r
j = C r

j N, and p C r
j Ck = C r

j Ck Ck . The function

U(C,Cr) assesses the agreement between two partitions by the difference between the expected
number of labels of partitions Cr that can be correctly predicted both with the knowledge of
clustering C and that without the knowledge of clustering C. The overall utility of the partition
Cwith respect to all the partitions can bemeasured as the sumof the pairwise agreements. There-
fore, the best median partition should maximise the value of overall utility [Equation (17.8)]

C� = argmax
C

R

r = 1

U C,Cr 17 8

Considering the information-theoretic approach to the median partition problem, the quality
of the consensus partition C∗ is determined by the amount of information which it shares with
the given partitions [Equation (17.9)].
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I C,Cr =
K

k = 1

k r

j = 1

p Ck,C
r
j log

p Ck,C
r
j

p Ck p C r
j

17 9

An optimal median partition can be found by solving the optimisation problem as shown in
Equation (17.10).

C� = argmax
C

R

r = 1

I P,Pr 17 10

However it is not clear how to directly use these equations in a search for consensus.

17.3.2 C–C Comparison

C–C Comparison considers a cluster as a unit and compares the similarity between clusters. In
other words, C–C comparison algorithms are based on clustering clusters. One typical C–C
comparison algorithm was proposed by Strehl and Ghosh, called meta-clustering algorithm
(MCLA) (Strehl and Ghosh, 2003). In MCLA, each cluster is represented by a hyperedge.
MCLA groups and collapses related hyperedges and assigns each data object to the collapsed
hyperedge in which it participates most strongly. The hyperedges that are considered related for
the purposes of collapsing are determined by a graph-based clustering. Each cluster of hyper-

edges is referred to as a meta-cluster. The number of hyperedges is reduced from R
r = 1k

r to k
by collapsing.
There are four steps in MCLA:

1. Construct Meta-graph. All the R
r = 1k

r indicator vectors h as vertices of another regular
undirected graph, which is called a meta-graph. The edge weights are proportional to the
similarity between vertices. Strehl and Ghosh employed in MCLA the binary Jaccard
measure, which we will introduce in Chapter 20. Since the clusters are non-overlapping
in individual partitions, there are no edges among vertices of the same partition, and thus
the meta-graph is r-partite.

2. Cluster Hyperedges. In this step, matching labels by partitioning the meta-graph into
k balanced meta-clusters are obtained. Different graph-partitioning algorithms may be
employed in this step. Strehl and Ghosh used the package METIS to cluster the indicator
vectors h into k meta-clusters. A meta-cluster represents a group of corresponding labels
because each vertex in the meta-graph represents a distinct cluster label.

3. CollapseMeta-clusters. For each of the kmeta-clusters, the hyperedges are collapsed into a
single meta-hyperedge. Each meta-hyperedge contains an association vector, where the
entry for each object describes its level of association with the corresponding meta-cluster.
The level is computed by averaging all indicator vectors h of a particular meta-cluster.

4. Compete for Objects. Each object is assigned to its most associated meta-cluster in terms
of the highest entry in the association vector.

The experiment results in Strehl and Ghosh (2003) showed that MCLA should be best suited
in terms of time complexity and quality when compared with the cluster-based similarity
partition algorithm (CSPA) and hypergraph-partitioning algorithm (HGPA).
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17.3.3 MIC Voting

MIC Voting is a common idea of many approaches, which focuses on the relation between
members and their clusters in all partitions. Via voting by data objects, the winning clusters
have high probabilities to be included in the final consensus partition.

17.3.3.1 Relabelling and Voting

Combining multiple partitions has a major problem which is that those partitions generated in
different situations may be totally different; that is, the clusters in these partitions are formed in
totally different ways. As an example, assume that we are given two partitions, each of which
contains three clusters. When combining these two partitions, we have to decide which of the
clusters in the first partition matches a given cluster of the second partition. Relabelling and
voting is one of the methods used to solve this problem.
Dimitriadou and colleagues proposed a relabelling and voting approach called the

voting-merging (VM) algorithm (Dimitriadou, Weingessel and Hornik, 2001). Generally,
VM consists of three procedures, namely the partition procedure, the voting procedure, and
finally the merging procedure. These three procedures of the algorithm are applied sequentially
and do not interfere with each other. The critical two procedures of VM are the voting and
merging procedures. Actually, the voting procedure further consists of relabelling and voting
steps. Relabelling creates a mapping between two clusters from two partitions. For example,
given partitions C1 = C1

1,…,C1
k and C2 = C2

1,…,C2
k , where Ci

j denotes the ith partition and

the jth cluster. To do the relabelling, the percentage of data points assigned to C1
l and C2

m

simultaneously is computed. Then the two clusters with the highest percentage of common data
points are mapped together. The same action is done to the remaining clusters iteratively until
all clusters in partitions are mapped (relabelled). After relabelling, the voting procedure takes
place: If a data point is assigned to both clusters which have been mapped, one vote will be
issued to the common cluster; if a data point is assigned to two clusters which are not mapped,
only half a vote will be issued to each of the two clusters. Therefore, the resulting partition at the
end of the voting procedure is a fuzzy partition of the data. Every data point may belong to more
than one cluster with a certain degree of belongingness. A neighbourhood relation between two
clusters can be measured in terms of how many data points in one cluster belong to the other.
A merging procedure starts with many clusters and merges clusters which are closest to
each other. After a single merging step, the sureness of the data points and the clusters are
recalculated based on the merged clusters. The merging step repeats until some stopping
criterion is met.
Bagging, also known as Bootstrap aggregating, is a resampling scheme, which is designed

to improve the quality of clustering. Dudoit and Fridlyand proposed two resampling methods,
one of which, named BagClust1, is to combine multiple partitions of bootstrap sample sets by
voting (Dudoit and Fridlyand, 2003). Such cluster voting is used to assess the confidence of
cluster assignments for individual observations. The motivation behind the bagging algorithm
is to reduce variability in the partitioning results via averaging. In BagClust1, the clustering
procedure is repeatedly applied to each bootstrap sample and the final partition is obtained
by plurality voting; that is, by taking the majority cluster for each observation. For a fixed num-
ber of clusters K, a clustering procedure (any clustering algorithm) is applied to the original
dataset X and cluster labels are obtained. Then B different datasets are drawn by sampling
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N objects with replacement from the empirical probability distribution defined by the input
dataset. The B multiple sets of objects on the resampled dataset can be considered as bootstrap
replications and they are denoted by xbn,1 ≤ b ≤B. The same clustering procedure is applied to
the bootstrap replicate datasets and cluster labels are obtained for all bootstrap replicate
datasets. Subsequently, the cluster labels of bootstrap datasets are permuted so that there is
maximum overlap with original clustering of these objects. Finally, a bagged cluster label
for each object is assigned by majority voting; that is, the cluster label corresponding to xn
is the one with the maximum votes.
Ayad andKamel (2008) proposed an idea of cumulative voting as a solution for the problemof

aligning clustering labels generated with different number of clusters. Unlike other voting
methods, a probabilistic mapping is computed in the cumulative clustering algorithm.
Cumulative voting virtually is sometimes referred to as weighted voting, and maps an input
ki-partition into a probabilistic representation as a k0-partition with cluster labels corresponding
to labels of the reference clusters. A criterionwas defined byAyad andKamel (2008) for obtain-
ing a first summary of the ensemble as the minimum average squared distance between the
mapped partitions and the optimal representation of the ensemble. Based on the maximum
information content, the selection criterion is formulated for the reference clustering. Suppose
that we haveR clusteringswith a variable number of clusters, denoted asU = U1,…,UR , such
that each partition Ui is represented by an N × ki binary stochastic matrix. The optimal solution
of consensus clustering (Ayad and Kamel, 2008) was found to be as shown in Equation (17.11),

U = argmin
U

1
R

R

i = 1

h v0 U i ,U 17 11

where v0(U
i) represented a mapping of partition Ui into a stochastic partition, defined with

respect to a reference partitionU0 and denoted asU0,i; that is, v0 U i U i U0, i. The mapping
v0(U

i) was referred to as cumulative voting. The dissimilarity function h , was defined as the

average squared distance between the probability vectors u0, ij and uj, which is given by
Equation (17.12).

h U0, i,U =
1
N

N

j = 1

u0, ij −uj2 17 12

The mapping v0(U
i) transforms the individual partitions of the ensemble into fixed stochastic

partitions in the sense that for all R partitions, the cluster labels of the reference partition U0,i

correspond to the clusters of the reference partitionU0. A categorical random variable, denoted

as C0,i, was defined over the set of reference cluster labels c0q
k0

q = 1
along the distributions

given by p c0, i = p c0 ci , where Co and Ci denote random variables defined over c0q
k0

q= 1

and cil
ki
l= 1, respectively. The stochastic matrix U0,i represents the distribution p c0, i x .

The cumulative voting method consists of two stages. First, the reference partition U0 is
selected based on the criterion given in Equation (17.13),

U0 = argmax
Ui

H C U i 17 13
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where H(C) is the entropy of the partition C. Thus U0 represents a first summary of the ensem-
ble. Second, a formulation of a subsequent criterion is proposed for finding an optimal consen-
sus partition. Finally, the cumulative voting map can be conducted in an unnormalised way
[Equation (17.14)]

U0, i =U0 U iTU i 17 14

or a normalised way [Equation (17.15)],

U0, i =U0 U iTD U i U i 17 15

where U0 is the reference partition with k0 clusters, U
i is the partition i with ki clusters, and

D(Ui) denotes a ki × ki diagonal matrix whose lth diagonal element is 1 nil. The empirical
distribution p c,x , as an intermediate representation of the ensemble, can be obtained by many
different means from U0,i. The final optimal consensus clustering, in turn, can be worked out
based on p c,x .

17.3.3.2 Mixture Model-based Methods

Topchy and colleagues proposed a finite mixture model to solve the consensus problem by
making use of only labels information Y delivered by the contributing clustering algorithms,
without the assistance of the original patterns in X (Topchy, Jain and Punch, 2005). The main
assumption is that the labels are modelled as random variables drawn from a probability
distribution described as a mixture of multivariate component densities [Equation (17.16)],

f yn Θ =
K

k = 1

αkf yn θk 17 16

where each component is parameterised by θk, and K components in the mixture are identified
with the clusters of consensus partition P. The mixing coefficients αk correspond to the prior
probabilities of clusters. The log-likelihood function for the parameters Θ= α1,…, αK ,
θ1,…,θK given the dataset Y is as shown in Equation (17.17).

log L Θ X = log
N

n = 1

f yn Θ =
N

n= 1

log
K

k = 1

αkf yn θk 17 17

The objective of consensus clustering is now formulated as a maximum-likelihood estima-
tion problem. The best fitting mixture density for dataset Y can be obtained by maximising the
log-likelihood function with respect to the unknown parameters Θ [Equation (17.18)];

Θ� = argmax
Θ

log L Θ X 17 18

Thus, the original problem of clustering in the space of dataX has been transformed, with the
help of multiple clustering algorithms, to a space of new multivariate features Y. The ultimate
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goal is to make a discrete label assignment to the data X through an indirect route of density
estimation of Y. The conditional probability of yn can be represented as given in
Equation (17.19).

f yn θk =
R

r = 1

f r ynr θ
r
k 17 19

Since the variables ynr take on nominal values from a set of cluster labels in the partition Pr,
it is natural to view them as the outcome of a multinomial trial [Equation (17.20)].

f r ynr θ
r
k =

k r

j= 1

θrk j δ ynr, j 17 20

The maximum-likelihood problem can be solved by using the expectation-maximisation
(EM) algorithm. To adopt the EM algorithm, the existence of the complete data (Y,Z) is
assumed. If the value of zn is known, then the component which is used to generate the data
yn can be easily found. The E-step of the solution to the mixture model with multivariate,
multinomial components is written as Equation (17.21).

E znk =
αk

R

r = 1

k r

j
θrk j δ ynr, j

K

g = 1
αg

R

r = 1

k r

j
θrk j δ ynr, j

17 21

The M-step is given in Equations (17.22) and (17.23).

αk =

N

n= 1
E znk

N

n = 1

K

k = 1
E znk

17 22

θrk j =

N

n = 1
δ ynr, j E znk

N

n= 1

K

k = 1
δ ynr, j E znk

17 23

The E- and M-steps are repeated iteratively until the algorithm converges.

17.3.4 M–M Co-occurrence

TheM–Mco-occurrence approach converts the consensus partitionproblem into a co-association
matrix partitioning problem. The entry of the co-association matrix is the frequency of two data
objects’ co-occurrence in all partitions, expressed as given in Equation (17.24),

Aij =
1
R

R

r = 1

δ Zr xi ,Zr xj 17 24
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where Zr(xi) represents the associated cluster label of the data object xi in partition Pr,
and δ(a, b) is 1 if a = b, and is 0 otherwise. There are many different algorithms to
solve this problem, including tree-based methods, graph-based methods and hypergraph
methods.

17.3.4.1 Tree-based Methods

Fred and Jain explored the idea of evidence accumulation for combining the results of multiple
clusterings (Fred and Jain, 2005). A framework for extracting consistent clustering among
given various partitions was proposed. According to the evidence-accumulation concept, each
partition was viewed as an independent evidence of data organisation, and individual data
partitions were combined based on a voting mechanism to generate a new R ×R similarity
matrix using the R partitions. In order to deal with partitions with different numbers of clusters,
a measure of similarity between patterns, which benefits the combination of the clustering
results, was proposed. The R partitions of N data points were mapped into a N ×N
co-association matrix [Equation (17.25)],

C i, j =
nij
R

17 25

where nij is the number of times the pattern pair (i,j) is assigned to the same cluster among the
R partitions. Different clustering algorithms could be applied to the similarity matrix. Fred and
Jain explored the evidence-accumulation clustering approach with the single-link and average-
link hierarchical agglomerative algorithms to extract the combined data partition. They also
introduced a theoretical framework, and optimality criteria, for the analysis of clustering
combination results based on the concept of mutual information, and on variance analysis using
bootstrapping.

17.3.4.2 Graph-based Methods

Strehl and Ghosh proposed the use of CSPA (Strehl and Ghosh, 2003). CSPA assigns one to
the entry of a similarity matrix corresponding to two objects which are in the same cluster.
The co-association matrix is the sum of all similarity matrices. Mathematically, assume that
the binary membership indicator matrix of the rth partition is H(r). The concatenated block

matrix H = H 1 ,…,H R defines a hypergraph with N vertices and R
r = 1k

r hyperedges.
The co-association matrix is given by Equation (17.26).

A=
1
R
HHT 17 26

Thus, the co-association matrix can be reclustered by any reasonable graph-partitioning
algorithm. METIS, which has been introduced in Chapter 16, was used by Strehl and Ghosh
(2003) because of its robust and scalable properties.
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17.3.4.3 Hypergraph Methods

Strehl and Ghosh also proposed the use of HGPA (Strehl and Ghosh, 2003). As mentioned
previously, the concatenated block matrix H = H 1 ,…,H R defines a hypergraph with

N vertices and R
r = 1k

r hyperedges. Therefore, the consensus clustering problem is formu-
lated as partitioning the hypergraph by cutting a minimal number of hyperedges. A hyperedge
represents the relationship amongst an arbitrary number of vertices, while CSPA considers
only pairwise relationships. HGPA employs the hypergraph-partitioning package, HMETIS,
which has already been introduced in Chapter 16.

17.3.4.4 Resampling Method

Monti and colleagues developed a consensus clustering method in conjunction with resampling
techniques (Monti et al., 2003). It provided the consensus across multiple runs of a clustering
algorithm and the ability to assess the stability of the discovered clusters. One of the important
features of the method is that all of the information provided by the analysis of the resampled
data can be graphically visualised and incorporated in the decisions about clusters’ number and
cluster membership.
The main motivation for the resampling-based method is the need to assess the stability of

the discovered clusters; that is, the robustness of the putative clusters to sampling variability.
If the data represent a sample of items drawn from distant sub-populations, and another sample
was drawn from the same sub-populations, the induced cluster composition and number should
not be radically different. Therefore, the more the attained clusters are robust to sampling var-
iability, the more we are confident that these clusters represent some structure. To this end,
perturbations of the original data were simulated by resampling techniques. The clustering
algorithm of choice can then be applied to each of the perturbed datasets, and the consensus
among multiple runs can be assessed.
Assuming a resampling scheme and a clustering algorithm had been selected, Monti and col-

leagues devised a method for representing and quantifying the agreement among the clustering
runs over the perturbed datasets. A consensus matrix, which is an N ×N matrix that stores, for
each pair of items, the proportion of clustering runs in which two items are clustered together,
was defined. The consensus matrix was obtained by taking the average over the connectivity
matrices of every perturbed dataset. More specifically, suppose that X(1), X(2),…,X(R) represents
the list of R perturbed datasets from the original dataset X. LetA(r) denote the N ×N connectivity
matrix corresponding to dataset X(r). The entries of A(r) were defined as in Equation (17.27).

A r i, j =
1 if items i and jbelong to the same cluster

0 otherwise
17 27

Let I(r) be the N ×N indicator matrix such that its (i,j)th entry is equal to 1 if both items i and
j are present in the dataset X(r), and 0 otherwise. Most resampling schemes, such as bootstrap-
ping or sub-sampling, yield datasets that do not include all items from the original dataset. The
consensus matrixA can be defined as a properly normalised sum of the connectivity matrices
of all the perturbed datasets [Equation (17.28)].
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A i, j = r
A r i, j

r
I r i, j

17 28

That is, the entry ofA i, j records the number of times items i and j are assigned to the same
cluster divided by the total number of times both items are selected. An agglomerative hierar-
chical tree construction algorithm is then applied to 1−A to yield a dendrogram of item adja-
cencies. Summary statistics accounting for the stability of a given cluster as well as of a
cluster’s members were defined based on the consensus matrix. These statistics can be used
to establish a ranking of the clusters in terms of their stability, as well as to identify the more
respective items within each cluster. The cluster consensus m(k) was defined for each cluster
k K, and item consensusmk(i) was defined for each item ei X and each cluster k. The cluster
consensus was defined as shown in Equation (17.29),

m k =
1

Nk Nk −1 2
i, j Ik
i < j

A i, j 17 29

and the item consensus was defined as in Equation (17.30),

mi k =
1

Nk −1 ei Ik
j Ik
i j

A i, j 17 30

where 1{condition} is the indicator function that is equal to 1 when condition is true, and
0 otherwise. Furthermore, an empirical cumulative distribution function (ECDF) defined over
the range [0, 1] is shown in Equation (17.31),

CDF T = i < j
1 A i, j ≤ T

N N−1 2
17 31

where 1{…} denotes the indicator function. The area under the ECDF corresponding to AK ,
which denotes the consensus matrix of results with K clusters, was computed based on
Equation (17.32).

a K =
m

i = 2

xi−xi−1 CDF xi 17 32

Therefore a metric was defined as shown in Equation (17.33)

Δ K =

a K K = 2

a K + 1 −a K

a K
K > 2

17 33

to determine the best number of clusters.
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17.4 Discussion

Consensus clustering has gained a lot of attention within the last decade, primarily because of
the following reasons: first, a lot of clustering algorithms have been developed since the middle
of the last century, though there is no guaranteed optimal algorithm for the clustering problem
due to its unsupervised nature; secondly, even while applying the same clustering algorithm to
the same dataset many times, different clustering results would be produced when different
initialisation parameters are adopted, or even when the same parameters are adopted over mul-
tiple runs in the case of stochastic algorithms; and last but not the least, combining the clus-
tering results of the same set of data points in different datasets is also an interesting, but
challenging, problem; for example, the study of different clustering results collected from dif-
ferent gene expression datasets or experiments of the same set of genes may find the genes
which are co-expressed consistently in the given datasets; that is, it may reveal that these genes
are more likely to be co-regulated than the genes found co-expressed in a single experiment.
This is further discussed in Chapter 24 where a recently proposed framework of consensus
clustering that tackles such aspects is presented, namely the unification of clustering results
from multiple datasets using external specifications (UNCLES) framework and method.
In this chapter, we introduced the fundamental principles of consensus clustering, which

could be classified into four categories in terms of consensus functions, namely P–P compar-
ison, C–C comparison, MIC voting, and M–M co-occurrence. P–P comparison-type consensus
functions compare the similarity or dissimilarity between two partitions, and the objective
function is to maximise the average similarity (or minimise the average dissimilarity) between
given partitions and the optimal consensus partitions, where the distance metric can be the
Mirkin distance or an information theoretical distance metric. C–C comparison-type consensus
functions consider the similarity or dissimilarity between a pair of clusters from different

Table 17.1 Summary of consensus clustering algorithms mentioned in this chapter

Name Year Reference Software

VM 2001 Dimitriadou, Weingessel and
Hornik (2001)

Resampling methods 2003 Monti et al. (2003)
MCL (MetaClustering)
CSPA
HGPA

2003 Strehl and Ghosh (2003) MATLAB
(Strehl 2011).

BOK
SAOM
BOM (Mirkin distance)

2004 Filkov and Skiena (2004)

Clustering ensembles weak 2005 Topchy, Jain and Punch (2005)
Evidence accumulation 2005 Fred and Jain (2005)
Graph Consensus Clustering
(GCC)

2007 Yu, Wong and Wang (2007)

Clustering aggregation 2007 Gionis, Mannila and
Tsaparas (2007)

Consensus clustering 2010 Brannon et al. (2010);
Seiler et al. (2010b)

Python (Seiler et al.,
2010a)
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clustering results and form a graph structure, which is called a meta-graph, whose vertices are
clusters and weighted links are similarities of pairwise clusters; the meta-graph is then clustered
by using graph-based clustering methods. MIC voting-type consensus functions relabel the
clusters in terms of the common members over all clusters and count the votes of each data
object in each cluster from all clustering results. M–M co-occurrence-type consensus functions
generate an association matrix in terms of the frequency of co-occurrence of every pair of data
points in all clustering results, thus the rest of the clustering problem can be solved by either
tree-based algorithms like hierarchical clustering algorithms or graph- or hypergraph-based
algorithms. We summarise these consensus clustering algorithms discussed in this chapter
in Table 17.1. The applications of using consensus clustering in the bioinformatics field are
also rich. We will discuss them in detail in Chapter 19.
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18
Biclustering

18.1 Introduction

The concept of simultaneously clustering a dataset in both dimensions can be traced back to
1972, proposed by Hartigan (1972) to analyse the voting data of the percentage Republican
vote for President of the United States in the southern states over the years 1900–1968.
It did not attract much attention until Cheng and Church (2000) developed a biclustering algo-
rithm to analyse gene expression data. We have mentioned that the rationale behind clustering
gene expression data is that the co-expressed genes may have a higher possibility to be co-
regulated. Most clustering algorithms can do the job of grouping co-expressed genes. However,
sometimes the case is that some genes are co-regulated only in some conditions rather than over
the conditions of the all of the samples. General clustering algorithms hardly can do this job.
Biclustering has gained much interest since the first biclustering algorithm was proposed by

Cheng and Church (CC). Now there are more than 30 different biclustering algorithms in the
literature, many survey and performance-comparison papers (Madeira and Oliveira, 2004; Pre-
lic et al., 2006; Tchagang et al., 2011; Eren et al., 2013; Oghabian et al., 2014), and many
toolboxes in many different platforms available (Barkow et al., 2006; Kaiser and Leisch,
2008; Eren, 2012). In this chapter, we will discuss the basic concept of biclustering and intro-
duce the types of bicluster. We will also borrow the taxonomy introduced by Oghabian et al.
(2014), and detail the most typical algorithms in each class, as it is impossible to detail every
biclustering algorithm in a single chapter.
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18.2 Overview

18.2.1 Statement of the Biclustering Problem

A biological system’s interaction with its environment is complex and gene regulation is multi-
factorial. Gene expression is influenced by the cell type, cell phase, external signals, and other
factors. Therefore, genes might not be co-regulated across all experimental conditions observed
in any comprehensive set of transcript or protein levels. In this case, the clustering task is to find
a set of genes co-regulated only in a subset of the samples. This defines the problems of biclus-
tering as follows

1. A cluster of genes should be defined with respect to only a subset of conditions; a cluster of
conditions should be defined with respect to only a subset of the genes;

2. A gene/condition should be able to belong to more than one cluster or no cluster at all and be
grouped using a subset of conditions/genes.

Assume that the gene expression datasetX RN ×M is anN byM data matrix where N denotes
the number of genes andM denotes the number of samples. Let us define the set of genes as g
and the set of samples as s. Therefore, the matrix Xg,s = g, s denotes full dataset X. Consid-
ering that I g and J s, the matrix XI,J = I, J is a sub-matrix of Xwith the subset of genes I
and the subset of samples J, where N = I and M = J . A bicluster is a subset of rows that
exhibit similar behaviour across a subset of columns, which thus can be defined as XI,J = I, J .

18.2.2 Types of Biclusters

The objective of biclustering is to find biclusters. However, there are many different types of
biclusters, which leads to a fact that some biclustering algorithms may only find few types of
biclusters but not all of them. We can identify four major types:

1. Biclusters with constant values in a gene expression matrix describe subsets of genes with
equal expression values within a subset of experimental conditions. Mathematically, con-
sidering a noise free case, they can be modelled as Matrix (18.1).

XI,J = I, J =

x x

x x

Matrix 18 1

It is obvious that the variance of such a noise-free bicluster is zero;
2. Biclusters with constant values on rows or columns: Biclusters with constant values on rows

indicate a subset of genes with expression levels that do not change across a subset of
samples, as shown in Matrix (18.2).

XI,J = I, J =

x1 x1
x2 x2

x1
x2

xN xN xN

Matrix 18 2
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Biclusters with constant values on columns indicate a subset of samples with expression
levels that do not change across a subset of genes, modelled as in Matrix (18.3).

XI,J = I, J =

x1 x2
x1 x2

xM
xM

x1 x2 xM

Matrix 18 3

This type of bicluster can follow either an additive model; that is, xi = μ+ αi, or a multipli-
cative model, that is, xi = μαi;

3. Biclusters with coherent values identify a subset of genes that are up-regulated and down-
regulated coherently across subsets of conditions; that is, with the same magnitude and same
direction across experimental conditions.Mathematically, an example of a noise-free bicluster
with coherent values can be modelled as in Matrix (18.4) or Matrix (18.5).

XI,J = I, J =

α1 + β1 α2 + β1
α1 + β2 α2 + β2

αM + β1
αM + β2

α1 + βN α2 + βN αM + βN

Matrix 18 4

or

XI,J = I, J =

α1β1 α2β1
α1β2 α2β2

αM β1
αM β2

α1βN α2βN αM βN

Matrix 18 5

4. Biclusters with coherent evolutions: Unlike biclusters with coherent values, biclusters with
coherent evolutions identify subsets of genes that are up-regulated or down-regulated coher-
ently across subsets of conditions irrespective of their actual values; that is, in the same
directions but with varying magnitude. Coherent-evolution biclusters are difficult to model
using a mathematical equation. But, depending on how coherent evolution is defined,
several merit functions can be defined for their statistical validation.

18.2.3 Classification of Biclustering

Biclustering has attracted a lot of interest since it was first used in the analysis of microarray gene
expression data (Cheng and Church, 2000). There are tens of biclustering algorithms in the lit-
erature. To study such enriched literature, we employ the taxonomy by Oghabian et al. (2014), to
categorise biclustering algorithms into four classes in terms of the criteria of searching biclusters:

1. Variance-minimisation biclustering methods (VMB): VMB searches for biclusters in
which the expression values have low variance throughout the selected genes, conditions,
or the whole sub-matrix;
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2. Correlation-maximisation biclustering methods (CMB): CMB mines for subsets of genes
and samples where the expression values of the genes correlate highly among the samples;

3. Two-way clustering methods (TWC): TWC discovers the homogeneous subsets of genes
and samples; that is, biclusters, by iteratively performing one-way clustering on the genes
and samples;

4. Probabilistic and generative methods (PGM): PGM employs probabilistic techniques
to discover genes (or, respectively, samples) that are similarly expressed across a subset
of samples (or, respectively, genes) in the data matrix.

In the next section, we will introduce the most typical algorithms in each class.

18.3 Biclustering Methods

18.3.1 Variance-minimisation Biclustering Methods

18.3.1.1 CC

CC proposed a deterministic greedy algorithm to seek biclusters with low variance, which is the
first biclustering algorithm, applied in analysis of microarray gene expression data (Cheng and
Church, 2000). A variance measure, called mean squared residue (MSR), was defined: if
I and J are sets of rows and columns of a bicluster, respectively, MSR then is mathematically
expressed as shown in Equation (18.1),

MSR=
1
I J

i I, j J

xij−xiJ −xIj + xIJ
2

18 1

where xij is the data element at row i and column j. xiJ , xIj, and xIJ are the mean values of the
expression values in row i, column j, and the whole bicluster, respectively, for i I and j J,
which are expressed as Equations (18.2).

xiJ =
1
J

j J

xij

xIj =
1
I

i I

xij

xIJ =
1
I J

i I, j J

xij =
1
I

i I

xiJ =
1
J

j J

xIj

18 2

The CC algorithm starts with the whole data matrix and removes the rows and columns that
have high residues gradually. Once the MSR of the bicluster reaches a given threshold, δ,
the rows and columns that produce a smaller residue than the bicluster residue are added back
to the bicluster. The found biclusters are masked with random values and then the process
repeats until no biclusters can be found. The whole CC algorithm consists of four sub-routines
to complete a piece of task.
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1. Algorithm 0 computes the score MSR for each possible row/column addition/deletion and
chooses the action that decreases MSR the most. If no action will decrease MSR, or MSR
≤ δ, return XIJ.

2. Algorithm 1, whose task is single-node deletion, firstly computes xiJ for i I, xIj for j J,
xIJ , and MSR(I, J). If MSR I, J ≤ δ, return XIJ. Secondly, it finds the row i I with

the largest d i = 1
J j J

xij−xiJ −xIj + xIJ
2
, and finds the column j J with the largest

d i = 1
I i I

xij−xiJ −xIj + xIJ
2
. Then it removes the row or column which induces the

largest d value.
3. Algorithm2, whose task ismultiple-node deletion, firstly computes xiJ for i I, xIj for j J,

xIJ , and MSR(I, J). If MSR I, J ≤ δ, return XIJ. Secondly, it removes the rows i I with
1
J j J

xij−xiJ −xIj + xIJ
2
> αMSR I, J , and recomputes xiJ , xIj, xIJ , andMSR(I, J). Then

it removes the columns j J with 1
I i I

xij−xiJ −xIj + xIJ
2
> αMSR I, J . Finally, if

nothing has been removed in the iteration, it switches to Algorithm 1.
4. Algorithm 3, whose task is node addition, first computes xiJ , xIj, xIJ , and MSR(I, J), i, j.

Secondly, it adds the columns j J with 1
I i I

xij−xiJ −xIj + xIJ
2
≤ MSR I, J , and recom-

putes xiJ , xIj, xIJ , andMSR(I, J). Then it adds the rows i Iwith 1
J j J

xij−xiJ −xIj + xIJ
2
≤

MSR I, J , and for each row, i I, adds its inverse of 1
J j J

−xij + xiJ −xIj + xIJ
2
≤

MSR I, J . Finally, if nothing is added, return XIJ.

Thus, the CC algorithm combines all the above algorithms to discover the biclusters as follows:

1. Apply Algorithm 2 on X, δ, and α. If the size ofX is small, the multiple nodes deletion can be
skipped. After Algorithm 2, we may obtain X ;

2. Apply Algorithm 1 on X and δ. After Algorithm 1, we may obtain X ;
3. Apply Algorithm 3 on X and X , we may obtain X ;
4. Return X , and replace the elements in X and also in X with random values, repeat 1–4,

until no more bicluster is produced.

18.3.1.2 Spectral Biclustering

An assumption in tumour classification is that samples drawn from a population containing
several tumour types have similar expression profiles if they belong to the same type. Under
this assumption, the data matrix X could be organised in a checkerboard-like structure with
blocks of high-expression levels and low-expression levels. The task of spectral biclustering
is to uncover the checkerboard structure through solving an Eigen problem. In doing so, spec-
tral biclustering consists of several processing steps: (i) simultaneous normalisation of genes
and conditions, (ii) post-processing the Eigenvectors to find partitions, and (iii) probabilistic
interpretation.
The microarray data can be viewed as a bipartite graph, where one set of nodes in this graph

represents the genes, and the other represents experimental conditions. A link connecting a
gene and condition represents the level of over-expression (or under-expression) of this gene
under this condition. Spectral biclustering includes the normalisation of rows and columns as
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an integral part of the algorithm. It attempts to simultaneously normalise both genes and con-
ditions. This can be achieved by repeating independent scaling of rows and columns iteratively
until convergence. This process, which is called bistochatisation, results in a rectangular matrix
X that has a doubly stochastic-like structure. All rows of X sum to a constant and all columns
sum to a different constant. X can be written as a product X =D1XD2, where D1 and D2 are
diagonal matrices. Generally, X can be computed by repeated normalisation of rows and
columns. The normalisation matrices R−1 and C−1 are computed as R= diag X 1N , where
1N denotes the all-one vector with the length of N, and C = diag 1M X . D1 and D2 then will
represent the product of all these normalisations. Once D1 and D2 are found, singular value
decomposition (SVD) is applied to X without further normalisation. After SVD, a set of gene
and condition eigenvectors and eigenvalues is produced. The largest eigenvalue is discarded
because it is trivial in the sense that its eigenvectors make a trivial constant to the matrix,
and therefore carry no partitioning information. The terminology ‘largest eigenvalue’ means
the largest non-trivial eigenvalue. A common practice in spectral clustering is to perform a final
clustering step to the data projected to a small number of eigenvectors, instead of clustering
each eigenvector individually. The final clustering algorithm can be either k-means or the nor-
malised cuts method. Furthermore, the degrees of membership of genes and conditions to the
respective bicluster according to the actual values in the partitioning-sorted eigenvectors
are ranked.

18.3.2 Correlation-maximisation Biclustering Methods

18.3.2.1 BiMine

BiMine is a typical CMB method proposed by Ayadi, Elloumi and Hao (2009). It relies on a
new evaluation function called average Spearman’s rho (ASR), which is used to guide the
exploration of the search space effectively. BiMine uses a new tree structure called bicluster
enumeration tree (BET) to represent the different biclusters discovered during the enumeration
process. BiMine also introduces a parametric rule that allows the enumeration process to cut
those tree branches that cannot lead to good biclusters. Different from MSR, which is deficient
in assessing the quality of biclusters with coherent evolutions, ASR is proposed based on
Spearman’s rank correlation, shown in Equation (18.3),

ρij = 1−
6

m

k = 1
rik xik −rjk xjk

2

m m2−1
18 3

where rik xik is the rank of xik, and m is the size of the data vector. Therefore, ASR can be
expressed as Equation (18.4)

ASR I, J = 2 max i I j ≥ i+ 1, j J
ρij

I I −1
, k J l ≥ k + 1, l I

ρkl

J J −1
18 4

and ASR I, J −1,1 . A high value (close to 1) indicates that the data are strongly correlated
between two vectors. BiMine consists of three steps: pre-processing the data, conducting a BET
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associated with X, and identifying the best biclusters. An example of BiMine is depicted in
Figure 18.1. The pre-processing step aims to remove irrelevant expression values of the data
matrix that do not contribute in obtaining apposite results. A value xij of X is considered to be
insignificant if condition (18.5) holds,

xij−avgi
avgi

≤ δ 18 5

where avgi is the average over the non-missing values in the ith row, and δ is a fixed threshold.
The step of conducting a BET starts with an initial tree, whose root is an empty bicluster and
leaves are all possible biclusters containing one gene with all significant conditions. Subse-
quently, the BET-tree creates recursively the BET and generates the set of best biclusters.
In doing so, the ith child of a node is made up, on one hand, of the union of the genes of
the father node and the genes of the ith uncle node, starting from the right side of the father;
on the other hand, it is made up of the intersection of the conditions of the father and those of the
ith uncle. If the ASR value associated with the ith child is smaller than or equal to the given
threshold, then this child will be ignored and only the child with a considerably high ASR
value, which has not been included in the bicluster, is kept. Finally, good biclusters can be
identified from the leaves which have to be (i) without children, (ii) not included in any other
bicluster, and (iii) with a good number of genes and samples.
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Figure 18.1 An example of BiMine. (a) The original datasets, where columns represent samples
denoted by letter ‘S’ and rows represent genes denoted by letter ‘G’. (b) The pre-processed data
matrix, whose remaining elements are significant. (c) The first level of BET: the BET is initialised
with a tree whose leaves are single genes with all significant samples or conditions. (d) The second
level of BET. (e) The final level of BET
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18.3.2.2 Bimax

Bimax is a divide-and-conquer algorithm. It assumes that there are only two expression levels,
on and off, of each gene. In this case, the gene expression data must first be binarised. Thresh-
olding is used: expression values higher than the predefined threshold are set to ones; other-
wise, to zeros. The threshold for binarisation is based on the mean of the data. Therefore,
Bimax is expected to find only up-regulated biclusters. A bicluster (Ik, Jk) defines a sub-matrix
of a matrix B whose elements are supposed to be one. Furthermore, all biclusters are found
inclusion maximal; that is, they are not entirely contained in any other biclusters. Bimax
employs an incremental procedure, which is based on work by Alexe et al. (2004). Alexe
et al.’s method finds all inclusion maximal cliques in general graphs. Each node in the input
graph is visited, and all maximal cliques are found that contain the visited node. A visit-to-a-
node operation comprises an iteration through all other nodes of the graph as well, and each
newly found bicluster is globally extended to its maximality. Bimax has an additional step that
extends newly created biclusters to their maximality and an additional absorption check oper-
ation is made.

18.3.2.3 Robust Biclustering Algorithm

Tchagang and Tewfik proposed a robust biclustering algorithm (ROBA) (Tchagang and Tew-
fik, 2006). Their objective was to discover all types of biclusters in a given dataset of any type
defined by the user in a timely manner. The ROBA is different from previous algorithms in
several ways: first, the ROBA can be used to find the exact number of all valid perfect biclusters
in each type and identify all of them in a timely manner; secondly, the ROBA uses basic linear
algebra and arithmetic tools and avoids the need for heuristic cost functions of prior approaches
that may miss some pertinent biclusters; thirdly, the ROBA relies on the manipulation of ele-
mentary binary matrices with entries equal to 0 and 1; lastly, the ROBA allows users to discover
biclusters under any specific experimental conditions.
The ROBA consists of three stages of processing. The first stage includes a series of pre-

processing procedures; namely, recovering missing values and quantising the data. In Tchagang
and Tewfik (2006), Tchagang and Tewfik replaced each missing value by zero and quantised the
data into L intervals {α1,…, αL}. The second stage of the ROBA decomposes the gene
expression matrix into the sum of the products of each of its distinct elements with a correspond-
ing elementary matrix. Each elementary matrix consists only of binary entries. Suppose that XQ

denotes the quantised gene expression data. XQ can be expressed as shown in Equation (18.6),

XQ =
l = L

l= 1

αlXl 18 6

where Xl are binary matrices. The third stage of the ROBA is to identify all types of biclusters
from the gene expression matrix. From the gene expression matrix decomposition in stage two,
such matrices can be obtained by analysing each elementary matrix Xl separately to obtain sub-
groups of genes that have constant expression level αl under different conditions. Such matrices
will therefore correspond to a sub-group of matrices of each elementary matrix whose elements
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are only the binary number 1. Based on this idea, Tchagang and Tewfik developed many
approaches to discover all types of biclusters, namely biclusters with constant values, biclusters
with constant values on columns or rows, biclusters with coherent values, and biclusters with
coherent evolution. We will not detail all of them here and the interested readers are referred
to Tchagang and Tewfik (2006).

18.3.3 Two-way Clustering Methods

18.3.3.1 Coupled Two-way Clustering

Getz et al. developed a coupled two-way clustering (CTWC) approach for microarray gene
expression data analysis (Getz, Levine and Domany, 2000). Considering that the number of
possible sub-matrices grows exponentially with the size of the original matrix, CTWC provides
an efficient heuristic to generate pairs of gene and sample subsets (Ik, Jk) by an iterative process
that severely restricts those possible candidates for such subsets. The iterative process is
initialised with full matrix containing all genes (g0) and all samples (s0) to perform standard
two-way clustering. Stable clusters and samples found in this step are denoted by g1i and s1i .
Then, every pair (gmi ,s

n
j ), where m, n may be either 0 or 1, defines a sub-matrix of expression

data. These sub-matrices are further clustered and the resulting stable gene (or sample) clusters
are denoted by g2k and s

2
k . Thus new clusters (gmi , s

n
j ), together with parent clusters, are obtained.

These steps are iterated further, using pairs of all previously found clusters. Every pair is used
only once. The process is terminated when no new clusters that satisfy some criteria are found.
The output of CTWC provides a broad list of gene and sample clusters.

18.3.3.2 Interrelated Two-way Clustering

Interrelated Two-way Clustering (ITWC) is one of the TWC algorithms, proposed by Tang
et al. (2001). It consists of five steps within each iteration during the clustering process:

Step 1 Clustering in the gene dimension: N genes in the dataset are clustered into K clusters
Ck k = 1,…,K by any clustering algorithm, such as k-means and SOM;

Step 2 Clustering in the sample dimension: Based on gene clusters generated by Step 1, each
cluster is split into two sub-clusters in samples independently, represented by Ca

k ,C
b
k ;

Step 3 Clustering-results combination: the clustering results from Steps 1 to 2 are combined,

as Ci = Cα
k ,C

β
l , where α, β are either a or b, and k, l 1,K , and k l. There are 2K

possible combinations for Ci;
Step 4 Find heterogeneous groups: a heterogeneous group is defined as a pair of clusters

whose samples are never grouped in any clusters.
Step 5 Sorting and reducing: the vector-cosine distance measures between members of heter-

ogeneous groups and binary sample membership pattern are calculated. Then these
distances are sorted in a descending order and only (first) one third of genes are selected
to be a cluster. The remaining genes are sent to the next iteration.
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The steps above are repeated until the termination conditions are satisfied. An occupancy
ratio is defined to control the termination: if the occupancy ratio reaches a predefined threshold,
the clustering procedure then is terminated.

18.3.4 Probabilistic and Generative Methods

18.3.4.1 Plaid Method

The Plaid method, whose name implies the appearance of a colour image plot of microarray
gene expression data, is one of the typical algorithms in the PGM class. The biclustering prob-
lem is the same as the idea of reordering the array and producing an image with some number K
of rectangular blocks on a diagonal. Every gene in gene-block k is expressed within and only
within those samples in sample-block k. There are many models representing different types of
biclusters, which can be written as Equations (18.7)–(18.10),

Xij = μ0 +
K

k = 1

μkρikκjk 18 7

Xij = μ0 +
K

k = 1

μk + αik ρikκjk 18 8

Xij = μ0 +
K

k = 1

μk + βjk ρikκjk 18 9

Xij = μ0 +
K

k = 1

μk + αik + βjk ρikκjk 18 10

where μ0 is a background colour, μk describes the colour in the block k, ρik is 1 if gene i is in the
block k (zero otherwise), and κjk is 1 if sample j is in the block k (zero otherwise). αik represents
the identical response of gene i in a subset of samples and βjk represents the identical response of
sample j across a subset of genes. Essentially, Equation (18.6) is equivalent to biclusters with con-
stant values; (18.7) and (18.8) are equivalent to biclusters with constant values on rows and col-
umns respectively; (18.9) is equivalent to biclusters with coherent values with additive model.
A more general model by mixing layer types can be expressed as shown in Equation (18.11),

Xij =
K

k = 0

θijkρikκjk 18 11

where θij0 describes the background layer. θijk is used to represent μk, μk + αik , μk + βjk ,
μk + αik + βjk, as needed. Each bicluster can be viewed as a layer, which represents the presence
of a set of biological processes or conditions.
The plaid model that we are seeking is the one minimising the following cost function

[Equation (18.12)].
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1
2

N

i= 1

M

j = 1

Xij−θij0−
K

k = 1

θijkρikκjk

2

18 12

To simplify matters, assuming that (K − 1) layers are available, the layer K is to minimise the
sum of squared error as given in Equation (18.13),

Q=
1
2

N

i = 1

M

j = 1

YK−1
ij −θijKρiKκjK

2
18 13

where Equation (18.14) shows the residual from the (K − 1) layer.

YK−1
ij =Xij−θij0−

K−1

k = 1

θijkρikκjk 18 14

Therefore, the problem is converted into a minimisation problem on a single layer and the
subscript K can be dropped for simplicity [Equation (18.15)],

Q =
1
2

N

i = 1

M

j= 1

Yij− μ +αi + βj ρiκj
2

18 15

subject to identifying conditions
N

i = 1
ρ2i αi =

M

j= 1
κ2j βj = 0. Straightforward Lagrange

multiplier arguments show that conditions (18.16)–(18.18) hold.

μ= i j
ρiκjYij

i
ρ2i j

κ2j
18 16

αi = i
Yij−μρiκj κj

ρi j
κ2j

18 17

βi =
i
Yij−μρiκj ρi

κj i
ρ2i

18 18

Then, the next step is to update ρi and κj. Given values for θij and κj, the values for ρi that
minimise Q are given by Equation (18.19),

ρi =
j
θijκjYij

j
θ2ijκ

2
j

18 19
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and similarly, given θij and ρi, the minimising values for κj are given by Equation (18.20).

κj = i
θijρjYij

i
θ2ijρ

2
i

18 20

The quantities ρi, κj and θij are updated iteratively.

18.3.4.2 Bayesian Plaid

The Plaid model was further extended into a Bayesian frame to be Bayesian Plaid. All para-
meters in the original plaid algorithm are assumed to follow distributions: μ, α, and β follow
Gaussian distribution, expressed as Equations (18.21)–(18.23),

μ0 0,σ2μσ
2 18 21

αik 0,σ2ασ
2 18 22

βik 0,σ2βσ
2 18 23

where σ2μ, σ
2
α, and σ

2
β are scalar hyper-parameters specified by the user. The binary membership

variables ρ and κ follow Binomial distribution as shown by Equations (18.24) and (18.25).

ρ k Binomial N,πk 18 24

κ k Binomial N,λk 18 25

The parameters πk and λk are the probability of a gene to belong to a bicluster k and the prob-
ability of a condition to belong to bicluster k, respectively. They follow a Beta distribution,
which is the conjugate prior of the Binomial distribution [Equations (18.26) and (18.27)],

πk Beta σ k
ρ ,γ k

ρ 18 26

λk Beta σ k
κ ,γ k

κ 18 27

where σ k
ρ ,γ k

ρ , σ k
κ , and γ k

κ are hyper-parameters. P X ρ,κ is the conditional probability
density function of X, which is written as Equation (18.28),

P X ρ,κ = P X ρ,κ,Θ,σ2 P Θ P σ2 dΘdσ2 18 28

where Θ is the set of parameters as Θ= μ0,α 1, β 1,…,α K ,β K
T . A collapsed Gibbs sampler

for inferring the posterior distribution of the bicluster membership variables was derived. The
interested readers are suggested to refer to Caldas and Kaski (2008) for more details.
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18.3.4.3 CMonkey

CMonkey is an integrative biclustering algorithm proposed by Reiss, Baliga, and Bonneau
(2006), which combines gene expression data, DNA-sequence data and associated network
data to produce biclusters based on a probabilistic model. CMonkey models each bicluster
via the Markov chain process, in which the bicluster is iteratively optimised, and its state is
updated based upon condition probability distributions computed using the cluster’s previous
state. Thus, the probabilities that each gene or sample belongs to the bicluster, conditioned upon
the current state of the bicluster, are defined. The components of the conditional probability are
modelled independently as p-values based upon individual data likelihoods, which are then
combined into a regression model to derive the full conditional probability. Three major distinct
data types are used for three components: the expression component, the sequence component,
and the network component.
Each bicluster begins as a ‘seed’ that is iteratively optimised by adding/removing genes and

samples to/from the cluster. By sampling from the conditional probability distribution using a
Monte Carlo procedure, it prevents premature convergence. Additional clusters are seeded and
optimised until a given number (kmax) of clusters have been generated or significant optimisa-
tion is no longer possible. Each bicluster k is defined as a sub-matrix of X, with the rows Ik
and Jk, Ik ⊂ I, and Jk ⊂ J. The variance in the measured levels of condition j is σ2j =

I −1
i I

xij−xj
2
, xj = i I

xij I . The mean expression level of condition j over the biclus-

ter genes Ik is xjk = i Ik
xij Ik . Then, the likelihood of an arbitrary measurement xij relative

to this mean expression level is given by Equation (18.29),

p xij =
1

2π σ2j + ε2
exp −

1
2

xij−xjk
2
+ ε2

σ2j + ε
2

18 29

where ε is an unknown systematic error in simple j. The likelihood for the measures of an

arbitrary gene i among the conditions in bicluster k are p xi =
j Jk

p xij , and similarly

the likelihood of a condition j’s measurements are p xj =
i Ik

p xij . Then the two tails

of normal distribution in Equation (18.28) are integrated to derive co-expression p-values
for gene i, rik, and for each condition j, rjk , relative to bicluster k. With the help of the MEME
algorithm, the motif p-values, sik, for each gene i relative to bicluster k can be calculated. Inde-
pendently, the p-values, qik , for each gene i and each network are computed for bicluster k.
Therefore, a procedure of combining all p-values into a single joint likelihood by a multi-
parametric logistic regression is carried out. The joint likelihood is written as shown in
Equation (18.30),

πik = p ik = 1 Xk,Si, exp β0 + r0 log rik + s0 log sik +
I

q0 log qik 18 30

where β0, r0, s0, and q0 are four independent variables.
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The CMonkey iterative procedure starts with a cluster-seeding method. There are many dif-
ferent seeding methods available, including (i) single-gene seeds, (ii) random or semi-correlated
seeds using a pre-specified distribution of cluster sizes, and (iii) seeding on the basis of co-
expressed edges in association networks. In principle, any seeding method may be used, but
we have to note that the algorithm may be more or less sensitive to the starting points. Once
a newly seeded bicluster is obtained, it is iteratively improved with respect to the joint likelihood
derived above. At each iteration, significant motifs of sequence are detected (using MEME), and
the joint membership probabilities πik for each gene or condition are computed. Moves including
adding genes or samples to the bicluster and dropping genes or samples from the bicluster are
performed in terms of the membership probability using a simulated annealing algorithm. They
are parameterised by an annealing temperature T as shown in Equation (18.31).

p add πik = e−π T ; p drop πik = e−1 1−πik T 18 31

There are some additional constraints inside the CMonkey algorithm to restrict the biclusters
from being either changed dramatically or dragged into local minima. We will not go further
into the algorithm, and interested readers are referred to Reiss, Baliga and Bonneau (2006). One
particular point with regard to CMonkey is that it is not clear as to what extent combining the
sequence component and the network component may benefit condition clustering, although
surely it may benefit gene clustering, which is only one aspect of biclustering.

18.4 Discussion

A comprehensive collection of biclustering algorithms is listed in Table 18.1, including their
references, classification, and software packages (if available). Unlike most clustering families,
biclustering is dedicated to solving the problem in gene expression data analysis. Therefore,
most biclustering algorithms have been applied in the analysis of gene expression datasets.
All these datasets are collected from either yeast or human cells, which represent the expression
level under specific conditions. Several biclustering algorithms were used to analyse yeast cell
cycle datasets (Cho et al., 1998; Spellman et al., 1998), yeast stress datasets (Gasch et al., 2000,
2001), yeast compendium (Hughes et al., 2000), and yeast galactose utilization (Ideker et al.,
2001). Other algorithms were used for human breast cancer (Miller et al., 2005; Pawitan et al.,
2005; Loi et al., 2007), lymphoma (Alizadeh et al., 2000), leukaemia (Golub et al., 1999), and
micro-RNA (miRNA)-mRNA functional modules (Bryan et al., 2014).
There are two very recent comparative studies of biclustering algorithms for gene expression

data: Eren et al. (2013) and Oghabian et al. (2014). Eren et al. compared 12 biclustering algo-
rithms, namely CC (Cheng and Church, 2000), Plaid (Lazzeroni and Owen, 2002), OPSM
(Ben-Dor et al., 2003), ISA (Bergmann, Ihmels and Barkai, 2003), Spectral (Kluger et al.,
2003), xMOTIFs (Murali and Kasif, 2003), Bimax (Prelic et al., 2006), BBC (Gu and Liu,
2008), COALESCE (Huttenhower et al., 2009), CPB (Bozdağ, Parvin and Catalyurek,
2009), QUBIC (Li et al., 2009) and FABIA (Hochreiter et al., 2010). Eight real gene expression
datasets, together with a synthetic dataset, were used to test these biclustering algorithms.
Oghabian et al. compared 13 biclustering algorithms, namely CTWC (Getz, Levine and
Domany, 2000), FLOC (Yang et al., 2005), SAMBA (Tanay, Sharan and Shamir, 2002),
BiMine (Ayadi, Elloumi and Hao, 2009), R/MSBE (Liu and Wang, 2007), CC, Bimax, factor
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Table 18.1 Summary of biclustering algorithms

Bicluster method Class Year Availability

δ-Clustering (Hartigan, 1972) 1972
CC (Cheng and Church, 2000) VMB 2000 Barkow et al. (2006);

Kaiser and Leisch (2008);
Eren et al. (2013)

δ-jk (Califano, Stolovitzky and Tu, 2000) 2000
CTWC (Getz, Levine and Domany, 2000) TWC 2000
ITWC (Tang et al., 2001) TWC 2001
DCC (Busygin et al., 2002; Busygin, Prokopyev and
Pardalos, 2008)

TWC 2002

SA (Ihmels et al., 2002; Ihmels, Bergmann, and Barkai,
2004)

TWC 2002 Barkow et al. (2006)

Plaid (Lazzeroni and Owen, 2002; Turner, Bailey and
Krzanowski, 2005)

PGM 2002 Kaiser and Leisch (2008);
Eren et al. (2013)

SAMBA (Tanay, Sharan and Shamir, 2002) PGM 2002
δ-P-Clustering (Wang et al., 2002) VMB 2002
Gibbs Clustering (Sheng, Moreau and Moor, 2003) PGM 2003
ISA (Bergmann, Ihmels and Barkai, 2003) TWC 2003 Eren et al. (2013)
OP-Clustering (Liu and Wang, 2003; Liu, Wang and
Yang, 2004)

CMB 2003

OPSM (Ben-Dor et al., 2003) CMB 2003 Barkow et al. (2006);
Eren et al. (2013)

Spectral (Kluger et al., 2003) VMB 2003 Kaiser and Leisch (2008);
Eren et al. (2013)

xMOTIF (Murali and Kasif, 2003) VMB 2003 Barkow et al. (2006);
Kaiser and Leisch (2008);
Eren et al. (2013)

GEMS (Wu et al., 2004; Wu and Kasif, 2005) PGM 2004
FLOC (Yang et al., 2005) CMB 2005
SA (Bryan, Cunningham and Bolshakova, 2005) CMB 2005
ZBDD (Yoon et al., 2005) VMB 2005
ROBA (Tchagang and Twefik, 2005) CMB 2005
Bimax (Prelic et al., 2006) CMB 2006 Barkow et al., 2006
CMonkey (Reiss, Baliga and Bonneau, 2006) PGM 2006
SEBI (Divina and Aguilar-Ruiz, 2006) VMB 2006
MOEB (Mitra and Banka, 2006) CMB 2006
UBCLUST (Li et al., 2006) CMB 2006
R/MSBE (Liu and Wang, 2007) VMB 2007
Bayesian Biclustering (Gu and Liu, 2008) PGM 2008 Eren et al., 2013
ACV (Teng and Chan, 2008) CMB 2008
Bayesian Plaid (Caldas and Kaski, 2008) PGM 2008
BiMine (Ayadi, Elloumi and Hao, 2009) CMB 2009
CPB (Bozdağ, Parvin and Catalyurek, 2009) CMB 2009 Eren et al., 2013
COALESCE (Huttenhower et al., 2009) CMB 2009 Eren et al., 2013
QUBIC (Li et al., 2009) VMB 2009 Eren et al., 2013
FABIA and FABIAS (Hochreiter et al., 2010) PGM 2010 Eren et al., 2013
TreeBic (Caldas and Kaski, 2010) PGM 2010
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analysis for bicluster acquisition or factor analysis for bicluster acquisition with sparseness
projection (FABIA/FABIAS), ISA, OPSM, Plaid, and QUBIC. The interested readers are
referred to those studies. We will introduce some typical applications in Chapter 19.
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19
Clustering Methods Discussion

19.1 Introduction

In the previous 9 Chapters, we have introduced the technical details of clustering methods com-
prehensively. The principles have been described; many individual algorithms have been pre-
sented; many resources including publicly accessible open source software packages have been
collected. In this chapter, we will switch to another flavour in the sense that we start to focus on
the applications of clustering algorithms rather than the techniques; that is, what is the infor-
mation that we may obtain from massive biological data using clustering algorithms rather than
how. As an essential part of the integrative cluster analysis pipeline, to choose a proper cluster-
ing algorithm from loads of existing clustering algorithms for a given dataset is not trivial.
Therefore, the objectives of this chapter are two-fold: on one hand, we may learn more by
studying others’ successful examples; for instance, what did other research obtain, by using
which clustering algorithm, and why? On the other hand, we also like to point out that some
clustering algorithms, which have not yet been utilised in the bioinformatic field, or which have
been evaluated in real biological datasets but have not been applied in analytical studies of
newly collected data, still have possibilities to be applied in future developments. This chapter
is organised such that each clustering family takes a section.

19.2 Hierarchical Clustering

In this section, we will discuss the applications of hierarchical clustering algorithms. As intro-
duced in Chapter 12, hierarchical clustering is one of most widely used clustering algorithms. It
has been applied in yeast cell cycle gene expression data analysis (gene clustering), human
breast cancer classification (sample clustering), human lymphoma classification (sample clus-
tering), and others.
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19.2.1 Yeast Cell Cycle Data

Two pioneering papers from a group at Stanford University (Eisen et al., 1998; Spellman et al.,
1998), which opened a new field of clustering analysis in high-throughput gene expression
studies, employed hierarchical clustering to study genome-wide regulation in the yeast cell
cycle (Cho et al., 1998). The hierarchical clustering algorithm used in these two studies was
based on the average-linkage method (Sneath and Sokal, 1973). A dendrogram that assembled
all genes into a single tree was computed. Spellman and colleagues analysed yeast cell cycle
datasets produced using different synchronisation methods; for example, elutriation, alpha
pheromone, cdc-15 (Spellman et al., 1998), and cdc-28 (Cho et al., 1998). Datasets elutriation,
alpha pheromone, and cdc-15 are publicly available, with the GEO accession numbers GSE22,
GSE23 and GSE24, respectively. An example of clustering the cdc-28 dataset using hierarchi-
cal clustering is depicted as a heatmap in Figure 19.1. In this example, the subset of 800 genes in
Spellman et al. (1998) is further filtered and those genes with missing data are removed. The
remaining dataset has 591 genes. To obtain the final clustering result, the tree can be cut based
on different requirements; for example, in terms of the between-cluster distance, the tree in
Figure 19.1 can be cut into three clusters, four clusters or five clusters.

19.2.2 Breast Cancer

Perou and colleagues conducted a study of molecular portraits of human breast cancer tumours
(Perou et al., 2000). Gene expression patterns in 65 surgical specimens of human breast tumours
from 42 individuals, employing cDNA microarrays representing 8102 genes, were clustered
using hierarchical clustering. Forty-two individuals were considered, including 36 infiltrating
ductal carcinomas, 2 lobular carcinomas, 1 ductal carcinoma in situ, 1 fibroadenomaand3normal
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Figure 19.1 An example of hierarchal clustering for yeast cell cycle dataset cdc-28
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breast samples. Twenty of the forty breast tumours were sampled twice. After an open surgical
biopsy to obtain the ‘before’ sample, each of these patients was treated with doxorubicin for an
average of 16weeks, followed by resection of the remaining tumour. To interpret the variation in
expression patterns, 17 cultured cell lines were also included. In total, 84 cDNA microarray
experiments were carried out. The raw microarray dataset can be obtained from NCBI website
with the series number GSE61. First of all, out of 8102 genes, 1753 genes (about 22%), whose
transcripts varied in abundance by at least four-fold from their median abundance in this sample
set in at least three of the samples, were chosen. The first experiment remarkably showed that the
tumours have great variation in their gene expression, and that the gene expression patterns have a
pervasive order reflecting relationships among genes, relationships among the tumours, and con-
nections between specific genes and specific tumours. As themain goal of this study was to clas-
sify tumours on the basis of their gene expression patterns, the first experimentwas not perfect for
this purpose. In the second experiment, a smaller subset (496) of genes, called the intrinsic gene
subset, was selected and these genes have significantly greater variation in expression between
different tumours than between paired samples from the same tumour. The cluster analysis of
the intrinsic gene subset revealed that the tissue samples were divided into two subgroups.
It is also worth noting that there is extensive residual variation in expression patters within each
of these two broad subgroups. Four subgroups of samples were identified to be related to
different molecular features of mammary epithelial biology; that is, estrogen receptor
positive(ER+)/luminal-like, basal-like, Erb-B2+ and normal breast. This study concluded that
the tumours could be classified into subtypes distinguished by pervasive differences in their gene
expression patterns.
Sørlie and colleagues continued the study of classifying breast carcinomas based on varia-

tions in gene expression patterns derived from cDNA microarrays, thereby correlating tumour
characteristics with clinical outcome (Sørlie et al., 2001). A larger number of tumours were
analysed and the clinical value of the subtypes was explored to refine the previous work
(Perou et al., 2000). A total of 78 breast carcinomas including 71 ductal, 5 lobular and 2 ductal
carcinomas in situ were obtained from 77 different individuals; two independent tumours from
one individual were diagnosed at different times. In this study, hierarchical clustering was
employed to analyse a total of 85 cDNA microarray experiments representing 78 cancerous,
three fibroadenomas and four normal breast tissues. Similarly to the second experiment in
Perou et al. (2000), the intrinsic gene set of 456 cDNA clones was selected to identify the intrin-
sic characteristics of breast tumours optimally. Cluster analysis using hierarchical clustering
revealed that the tumours were separated into two main branches: the first branch contained
three subgroups that all were characterised by low to absent gene expression of the ER, which
has been reported previously (Perou et al., 2000); the second branch, which had been defined as
a luminal/ER+ cluster, could be separated into two or probably three distinct subgroups. The
group of 32 tumours, whichwas termed luminal subtypeA, demonstrated the highest expression
of the ER α gene, GATA binding protein 3, X-box binding protein 1, trefoil factor 3, hepatocyte
nuclear factor 3 α, and estrogen-regulated LIV-1. The second group of tumours positive for
luminal-enriched genes could be broken into 2 smaller units, a small group of 5 tumours called
luminal subtype B, and a group of 10 tumours called luminal subtype C. The striking facts are:
(i) luminal subtype C was distinguished from luminal subtypes A and B by high expression
of a set of genes whose coordinated function was unknown, which was shared with basal-like
and ERBB21 subtypes; (ii) luminal subtype A was distinguished from luminal subtypes
B and C by high expression of a set of genes labelled with group F. A second hierarchical
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clustering analysis was conducted using the intrinsic gene set and the subset of 51 carcinomas,
three benign tumours and four normal breast samples to examine the robustness of the observed
clusters in the first experiment. The results presented that the same major subtypes were discov-
ered, except that the position of the five luminal subtype B tumours changed to be grouped with
theErb-B2+ subtype, although luminal subtypeB tumours donot over-expressErb-B2.All these
results suggested that the groupings into the four subtypes, namely Luminal A, Luminal B + C,
HER2-enriched, and Basal-like are reasonably robust with most of the tumour samples staying
together in the same groups when using different sample sets for the analysis. The light shed on
subtype classification of breast carcinomas by these two studies made it clear that there are four
molecular ‘intrinsic’ subtypes of breast cancer.
Herschkowitz and colleagues conducted a study to classify a large set of mouse mammary

tumour models and human breast tumours using gene expression analysis. As genomic studies
evolve, further sub-classification of breast tumours into new molecular entities is expected to
occur and a new breast cancer intrinsic subtype, known as Claudin-low, was identified in
human tumours, again by using hierarchical clustering (Herschkowitz et al., 2007).

19.2.3 Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin’s
lymphoma, was identified as being clinically heterogeneous: more than half of patients
succumbed to the disease while 40% of patients responded well to the therapy and had pro-
longed survival, according to a report in 2000 (Alizadeh et al., 2000). It motivated Alizadeh
and colleagues to investigate the unrecognised molecular heterogeneity in tumours underneath
this variabilty in natural history. Asystematic characterisation of gene expression in B-cell
malignancies was conducted by using DNA microarrays.
Two molecularly distinct forms of DLBCL, which have gene expression patterns indica-

tive of different stages of B-cell differentiation, were identified by Alizadeh and colleagues
(2000). One type expressed genes characteristic of germinal centre B-cells (‘germinal centre
B-like DLBCL’); the second type expressed genes normally induced during in vitro activa-
tion of peripheral blood B-cell (‘activated B-like DLBCL’). Patients with germonal centre
B-like DLBCL had a significantly better overall survival than did those with activated B-like
DLBCL.
The genome-wide gene expression dataset, with the GEO accession numbers GSE60, was

obtained from 128 microarray analyses of 96 samples of normal and malignant lymphocyptes.
Hierarchical clustering was used to group tumours and cell samples on the basis of similarity in
their genes, rather than to group genes on the basis of similarity in the pattern with which their
expression varied over all samples as what Eisen and colleagues did in Eisen et al. (1998). Dis-
tinct clones representing the same gene were typically clustered in adjacent rows in the den-
drogram produced by hierarchical clustering, indicating that these genes have characteristic
and individually distinct patterns of expression. The clusters of coordinately expressed genes
were defined as good expression ‘signatures’. A gene expression signature was named by either
the cell type in which its component genes were expressed (T-cell signature) or the biological
process in which its component genes are known to function (the proliferation signature).
Alizadeh and colleagues reclustered the DLBCL cases with hierarchical clustering using only
expression pattern of the genes that define the germinal centre B-cell signature. Two large
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branches of tumour samples were clearly shown: one branch was defined as germinal centre
B-like and the other was defined as activated B-like DLBCL.
With the advent of more advanced clustering methods, in many newer studies, hierarchical

clustering was not used as a solo analytical tool; on the contrary, it was employed together with
other methods to produce more precise results (Shipp et al., 2002; Monti et al., 2005).

19.3 Fuzzy Clustering

The greatest advantage of fuzzy clustering over hard (crisp) clustering is that fuzzy clustering
calculates for each data point a defined degree of belongingness to every suggested cluster.
It suggests that assigning a data point to multiple clusters is possible. In this section, we will
discuss some applications that employed fuzzy clustering in the bioinformatics field.

19.3.1 DNA Motifs Clustering

Functional transcription factor binding sites generally appear in clusters, which represent pro-
moters or enhancers. In contrast, isolated sequence elements normally are not biologically sig-
nificant even when they match a consensus pattern perfectly. Therefore, searching for clustered
potential transcription factor binding sites may help to filter insignificant items from the output
lists of sequence-scanning routines. To this end, fuzzy clustering algorithms were applied to a
two-dimensional cluster analysis because the two-dimensional analysis allows one to consider
the scoring of the potential sites in addition to the position along the DNA. Fuzzy approaches
are best suited to deal with vague data such as scored binding sites (Pickert et al., 1998). Two
fuzzy clustering algorithms, FCM and the Gath–Geva algorithm, were employed in this study.
FCM is very fast and it searches for spherical clusters. The Gath–Geva algorithm extends the
cluster shapes to hyper-elliptic. Using fuzzy clustering, 19 binding sites were suggested, where
13 binding sites, which were all sites that have been proven experimentally, were included.
Remarkably, 49 apparent false-positive matches were removed from the original output lists
of sequence-scanning routines.

19.3.2 Microarray Gene Expression

Many proteins serve different roles depending on the demands of the organism, and therefore
the corresponding genes are often co-expressed with different groups of genes under different
situations. Therefore many genes are similarly expressed to multiple, distinct groups of genes.
Because most commonly used analytical methods cannot appropriately represent these rela-
tionships, fuzzy clustering is a candidate to identify overlapping clusters of conditionally
co-regulated genes. The performance of fuzzy clustering algorithms in real microarray gene
expression datasets has been investigated in many different studies (Datta and Datta, 2003;
Dembele and Kastner, 2003). For example, in Dembele and Kastner (2003), FCM has been
investigated in many real microarray gene expression datasets, including gene expression in
response to serum concentration in human fibroblasts (Iyer et al., 1999), yeast cell cycle
cdc28 dataset (Cho et al., 1998), and human cancer cell lines (Ross et al., 2000). Furthermore,
Dembele and Kastner also proposed a method to compute an upper bound value for the
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fuzziness parameter m. They pointed out that m was commonly fixed to two, but FCM often
failed in microarray datasets when m= 2. The upper bound value for m, which was defined
as mub, was estimated. Therefore, the choice of fuzziness parameter m is determined as
m= 1 +m0, where m0 = 1 if mub ≥ 10; and m0 =mub 10 if mub < 10. Dembele and Kastner
proved that fuzzy clustering is a convenient method to select genes exhibiting tight association
to given clusters. In the case of yeast dataset, genes which are likely to be relevant for biological
significance of the cluster are indeed retained preferentially following threshold-based
selection.
FCM clustering was used by Gasch and Eisen (2002) to identify overlapping clusters

yeast genes based on published gene expression data following the response of yeast cells
to environment changes, for example zinc starvation (Lyons et al., 2000), phosphate limitation
(Ogawa, DeRisi and Brown, 2000), DNA-damaging agents (Gasch et al., 2001), and a variety
of other stressful environment conditions (Gasch et al., 2000). Yeast cells must have a precise
mechanism to mediate the synthesis and function of proteins in the cell to respond to diverse
and frequently changing environmental conditions. Many regulatory factors, which are essen-
tial in the overall genomic expression program, act under specific conditions, and together they
govern the expression of overlapping sets of genes. The analytical study using fuzzy clustering
by Gasch and Eisen (2002) suggested that the condition-specific regulation of overlapping sets
of yeast genes is a prevalent theme in the regulation of yeast gene expression. A large fraction of
yeast genes is expressed in patterns that are similar to different groups of genes in response to
different subsets of the experiments. Moreover, a substantial number of these genes contain
multiple transcription factor binding sites in their promoters, consistent with the idea that they
are conditionally regulated by multiple, independent regulatory systems. Another benefit of the
fuzzy clustering algorithm is that it identifies continuous memberships of genes. This allows
each cluster to be expanded or collapsed to view genes of varying similarity in expression.
While the genes of highest membership in a given cluster are often tightly correlated in terms
of biochemical function and regulation, expanding the cluster can identify genes that are
similarly expressed in only subsets of the experimental conditions.
Kim and colleagues studied the effect of data normalisation on fuzzy clustering of

DNA microarray (Kim, Lee and Bae, 2006). To identify the effect of data normalisation,
three normalisation methods, including two common scale and location transformations
and lowess normalisation methods, were used to normalise three microarray datasets. The
effects of normalisation were evaluated. The comparative analysis showed that the clustering
performance depends on the normalisation method used. Particularly, the selection of
the fuzzification parameter value for the FCM method was sensitive to the normalisation
method used for datasets with large variations across samples. Lowess normalisation is more
robust for clustering genes from general microarray data than the two common scale and
location adjustment methods when samples have varying expression patterns or are noisy.
In particular, the FCM method slightly outperformed the hard clustering methods when
the expression patterns of genes overlapped and was advantageous in finding co-regulated
genes.
Wang and colleagues developed an algorithm employing two models for tumour classifica-

tion and target gene prediction. First, gene expression profiles are summarised by optimally
selected self-organising map (SOM), followed by tumour sample classification by FCM
clustering (Wang et al., 2003). The aim of applying the SOM procedure in the algorithm
was to find map units that could represent the configuration of the input dataset, and at the
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same time to achieve a continuous mapping from the input gene space to a lattice. The FCM
was employed in order to assign fuzzy membership values that could serve as a confidence
measure in tumour classification. Furthermore, the Fisher’s linear discriminant is a general
method in discrimination analysis, which searches for good separation between groups by find-
ing the maximal ratio of the between-group-sum of squares to the within-group-sum of squares.
The pair-wise Fisher’s linear discriminant was combined into the algorithm to accomplish
the cross validation of the selected features. The algorithm was tested on four published data-
sets, including leukaemia (Golub et al., 1999), colon cancer (Alon et al., 1999), brain tumours
(Pomeroy et al., 2002), and NCI60 cancer cell lines (Ross et al., 2000).

19.4 Neural Network-based Clustering

SOM is one of the most famous and popular neural network-based clustering algorithms. It has
been widely used in many different applications since it was invented by Kohonen in the 1980s
(1990, 1997). Tamayo and colleagues first applied SOM in the analysis of gene expression data
(Tamayo et al., 1999). SOM constructs a geometry of neurons as a rectangular grid (could be
another shape) and each neuron is mapped into the data space corresponding to a prototype.
Neurons are updated iteratively towards their respective prototypes. Therefore, SOM imposes
structure on the data, with neighbouring neurons tending to define related clusters. SOM is
analogous to an entomologist’s specimen drawer, with adjacent compartments holding similar
insects. SOM is particularly well suited for exploratory data analysis because they expose the
fundamental patterns in the data. SOM was applied to several real microarray datasets in
Tamayo and colleagues’s study (1999), namely yeast cell cycle cdc28 data (Cho et al.,
1998), macrophage differentiation in HL-60, and hematopoietic differentiation in four models
including HL-60, U937, Jurkat and NB4 cells. The latter two datasets are available at http://
www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. Very recently, Chavez-Alvarez and col-
leagues employed SOM to analyse the expression level of 282 genes, which have been
known to have an activity during the cell cycle, in five well-known yeast cell cycle datasets
(Chavez-Alvarez, Chavoya and Mendez-Vazquez, 2014). These five datasets include cdc28
dataset (Cho et al., 1998), cdc15 dataset, alpha dataset (Spellman et al., 1998), alpha-30 dataset,
and alpha-38 dataset (Pramila et al., 2006). The study attempted to find clusters of genes with
similar behaviour in the five datasets along two cell cycles.
Since SOM was found to be superior to many other clustering algorithms, it was often com-

bined with some other clustering algorithms that are also superior to general clustering algo-
rithms. For example, Hsu and colleagues proposed a hierarchical dynamic self-organising
approach for cancel class discovery and marker gene identification (Hsu, Tang and Halgamuge,
2003). The approach integrated merits of hierarchical clustering and the robustness of SOM. It
is performed in three successive phases: sample class discovery, marker gene identification,
and partition refinement. The approach was evaluated with leukaemia data (Golub et al.,
1999) and colon cancer data (Alon et al., 1999). Another example is the algorithm proposed
by Wang and colleagues (2003), which has been discussed in the previous section. This
algorithm combines SOM and FCM.
Another successful type of neural network based clustering algorithms, which has been

widely used in the bioinformatic field, is ART and its variants. Tomida and colleagues
(2002) applied fuzzy ART to analyse the time series expression data during the sporulation
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of budding yeast; these data were collected by Chu and colleagues (1998). In this study, 522
genes were considered in the cluster analysis. Among these 522 genes, 45 genes that have been
known to have some roles in meiosis and sporulation were selected as index genes. Some of
these genes were expressed at different time points, roughly labelled as ‘Early’, ‘Middle’, ‘Mid-
Late’ and ‘Late’. By using fuzzy ART, four cases of the number of clusters such as 4, 5, 6 and 7,
determined by different vigilance parameter values, were examined. Finally, the clustering
results were evaluated by the index genes. Projective ART is also one of the variants of
ART, which was proposed by Cao and Wu (2002), and then was applied to microarray data
to construct a cancer prediction model by Takahashi, Kobayashi and Honda (2005). The major
difference between projective ART and original ART lies in the F1 layer where a neuron in the
F1 layer can be active relative to some neurons in the F2 layer, but inactive relative to other F2

neurons for the projective ART algorithm. The aim of the projective ART algorithm is to find
projected clusters, each of which consists of a subset of data points together with a subset of
dimensions such that the selected data points are closely correlated in the selected dimensions.
Essentially, it has the same idea as biclustering has. The projective ART algorithm was eval-
uated by Takahashi, Kobayashi and Honda (2005) in twowell-known gene expression datasets:
leukaemia data (Golub et al., 1999) and lung cancer data (Bhattacharjee et al., 2001). The
projective ART was also applied (Takahashi et al., 2006) to soft tissue sarcoma (STS) micro-
array data as a gene-filtering method to select specific genes for each subtype. In this study, the
results showed that the projective ART algorithm provided higher prediction accuracy than did
other methods, and many selected genes are known prognostic marker genes for other tumours
and could be candidate marker genes for the diagnosis of STS. The follow-up study in
Takahashi et al. (2013) investigated the 28 selected genes from Takahashi et al. (2006), and
found that macrophage migration inhibitory factor (MIF) and stearoyl-CoA desaturase 1
(SCD1) represent an effective diagnostic marker combination to discriminate pleomorphic
malignant fibrous histiocytoma and myxofibrosarcoma.
Some other neuron network-based clustering methods have also been evaluated in real

biological datasets. For example, the SSMCL algorithm based on the OPTOC paradigm
(Wu et al., 2004) was evaluated using yeast cell cycle cdc28 data (Cho et al., 1998); in Salem,
Jack and Nandi (2008), SOON was also evaluated using yeast cell cycle cdc28 data in addition
to two cancer datasets, namely lymphoma data (Alizadeh et al., 2000) and liver cancer data
(Chen et al., 2002). Although these algorithms have not been applied in the analytical studies
of newly collected datasets, they can be strong candidates for being analytical tools since they
have been tested in the real biological datasets.

19.5 Mixture Model-based Clustering

Mixture model clustering has been widely used in bioinformatic cluster analysis. As we have
discussed in Chapter 15, mixture model-based clustering algorithms may be classified into two
large categories: finite mixture models and infinite mixture models. Finite mixture models can
be further classified into two subgroups in terms of statistical inference, namely maximum like-
lihood methods and Bayesian methods. Generally speaking, there are many more applications
of finite mixture models than those of infinite mixture models, simply because infinite mixture
models have been receiving more attention only very recently. After Eisen and colleagues
(1998) brought the idea of clustering into high-throughput gene expression analysis, people
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started considering other clustering algorithms, which may do the better job. Mixture model-
based clustering is one of the clustering families that were chosen to be applied to high-
throughput data (Yeung et al., 2001; Ghosh and Chinnaiyan, 2002; Medvedovic and
Sivaganesan, 2002). We will discuss the examples of finite mixture models and infinite mixture
models, respectively.

19.5.1 Examples of Finite Mixture Models

Ramoni and colleagues proposed a Bayesian method for model-based clustering of gene
expression dynamics (Ramoni, Sebastiani and Kohane, 2002). Gene expression time series data
are represented as a mixture of autoregressive models. The objective of the algorithm is to
group the time series data into many clusters, where the time series in a particular cluster
are supposed to be generated by the same stochastic process.
In the journal Bioinformatics, two papers about finite mixture models appeared nearly at the

same time: one paper was by Yeung and colleagues (2001) and the other was by Ghosh and
Chinnaiyan (2002). Both papers investigated the performance of maximisation likelihood solu-
tion of finite mixture models in gene expression data. As we have introduced in Chapter 15, the
covariance of each component, say the gth component, can be parameterised by eigenvalue
decomposition in the form shown in Equation (19.1),

Σg = λgDgAgDT
g 19 1

where λg is a scalar, Ag is a diagonal matrix whose elements are proportional to the eigenvalues
of Σg, and Dg is the orthogonal matrix of eigenvectors (Fraley and Raftery, 1999). Yeung and
colleagues tested the model-based algorithm in two real microarray gene expression data
experiments: one was ovary data collected by Schummer and colleagues (1999) and the other
was yeast cell-cycle data by Cho and colleagues (1998). Two subsets of yeast cell-cycle data,
one with 384 genes and the other one with 237 genes, were investigated, respectively. Ghosh
and Chinnaiyan investigated the model-based clustering algorithm in two real microarray gene
expression data experiments: one is cutaneous melanoma data collected by Bittner et al. (2000)
and the other is prostate cancer data collected by Dhanasekaran et al. (2001). To use the model-
based clustering algorithm correctly, one has to keep two questions in mind. The first question
is which covariance structure should be used (different covariance structures have been sum-
marised in Table 14.1), since different structures may result in different numbers of parameters.
For example, the algorithm with the ID ‘VVV’, representing elliptical distribution and variable
volumes, has M +M M + 1 2 parameters. If the dimensionM of a dataset is large, the num-
ber of parameters could be very large, which means that to estimate these parameters correctly
requires a large number of observations. Furthermore, insufficient observations may result in an
ill-conditioned covariance matrix, which causes numerical problems. The second question is
how many clusters there are in the dataset. Since the algorithm requires the number of clusters
as an input parameter, which is unknown a priori, the popular practice is to set a range of num-
bers of clusters, sayG Kmin,Kmax , then to apply the algorithm to the dataset with all numbers
of clusters, resulting in many different clustering results, and finally to select a clustering result
among many clustering algorithms in terms of clustering validation values. Numerical cluster-
ing validation will be discussed in Chapter 20. In both studies (Yeung et al., 2001; Ghosh and
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Chinnaiyan, 2002), Bayesian information criterion (BIC) was employed to validate the
clustering result.
McLachlan and colleagues introduced a software EMMIX-GENE for the clustering of

microarray expression data, particularly of tissue samples on a large number of genes
(McLachlan, Bean and Peel, 2002). EMMIX-GENE is a feasible approach which first selects
a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t
distributions to rank the genes, and employs a mixture of factor analysers to reduce effectively
the dimension of the feature space of genes. We have introduced both a mixture of t
distributions model and a mixture factor analysers model in Chapter 15. McLachlan and
colleagues investigated EMMIX-GENE with the colon tissue data by Alon and colleagues
(1999) and leukaemia tissue data by Golub and colleagues (1999). Since the mixture of normal
distributions requires a sufficiently large number of observations to prevent singular estimates
of the component-covariance matrices, it turns out that the case of clustering tissues on the basis
of gene expression levels is more difficult because it has a much larger number of points to
cluster than in the case of clustering genes on the basis of their expression patterns; sometimes
the number of genes is much higher than the number of tissues. Therefore, a mixture of factor
analysers was applied to deal with large dimensional datasets.
McNicholas and Murphy applied a parsimonious Gaussian mixture model, which was pro-

posed inMcNicholas andMurphy (2008) and primarily based on mixture of factor analysers, to
microarray gene expression data analysis (McNicholas and Murphy, 2010). As we introduced
in Table 15.2 Chapter 15, there are eight covariance structures of a parsimonious Gaussian mix-
ture model based on the constraints, similarly to Gaussian mixture models. Using the colon
tissue data (Alon et al., 1999) and leukaemia tissue data (Golub et al., 1999), the performance
of clustering results in terms of validation values were compared with many other clustering
algorithms; namely, hierarchical clustering algorithms, k-means, PAM, and MCLUST. It
requires the number of clusters as an input parameter, which is similar to the other model-based
clustering algorithms, and additionally, it requires the specific number of factor analysers. One
has to select the best results among the results with both a range of the number of clusters and a
range of the number of factor analysers in terms of validation values.
Baek and McLachlan extended a mixture of common factor analysers, which was proposed

by Baek, McLachlan and Flack (2010), and a mixture of multivariate t-distributions, which was
developed by Andrews and McNicholas (2011), to a mixture of common t-factor analysers in
gene expression data to cluster large dimensional data (Baek and McLachlan, 2011). There
were two objectives of using a mixture of common t-factor analysers: the first is to reduce
the number of parameters further, and the second is to be more robust against outliers. The
algorithm was investigated using a breast and colon cancer dataset (Chowdary et al., 2006)
and a lung cancer dataset (Bhattacharjee et al., 2001). Similar to the mixture model of factor
analysers, this algorithm also requires both the number of clusters and the number of factor
analysers.

19.5.2 Examples of Infinite Mixture Models

Heller and Ghahramani proposed Bayesian hierarchical clustering (BHC), which has several
advantages over traditional distance-based agglomerative clustering algorithms (Heller and
Ghahramani, 2005). First, it defines a probabilistic model for the data, which can be used to
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compute the predictive distribution of a test point and the probability of it belonging to any of
the existing clusters in the tree, while conventional hierarchical clustering algorithms do not
calculate the probability for each data point. Secondly, BHC uses a model-based criterion to
decide on merging clusters rather than an ad-hoc distance metric. Thirdly, Bayesian hypothesis
testing is used to decide which merges are advantageous and to output the recommended depth
of the tree. Lastly, the algorithm can be interpreted as a novel fast bottom-up approximate
inference method for a Dirichlet process mixture model. Cooke and colleagues developed a
generative BHC algorithm for microarray time series that employs Gaussian process regression
to capture the structure of the data (Cooke et al., 2011). Darkins and colleagues improved
BHC by using a randomised algorithm (Darkins et al., 2013).

Medvedovic and Sivaganesan used a clustering procedure based on the Bayesian infinite
mixture model and applied it to cluster gene expression profiles (Medvedovic and Sivaganesan,
2002). Clusters of genes with similar expression patterns were identified from the posterior
distribution of clusterings, which was estimated by a Gibbs sampler. The posterior distribution
of clusterings was summarised by calculating posterior pairwise probabilities of co-expression.
In contrast to the finite mixture models, this method does not require specifying the number of
clusters, and the resulting optimal clustering is obtained by averaging over models with all pos-
sible numbers of clusters. It represents a qualitative shift in the model-based cluster analysis of
expression data because it allows for incorporation of uncertainties about the true number of
components. The utility of this algorithm was investigated in the analysis of the yeast cell cycle
data described by Cho and colleagues (1998). Soon afterwards, Medvedovic and colleagues
developed different variants of Bayesian mixture-based clustering procedures for gene
expression data with experimental replicates (Medvedovic, Yeung and Bumgarner, 2004).
In this approach, clusters of co-expressed genes were created from the posterior distribution
of clusterings, which was estimated by a Gibbs sampler. Then infinite Bayesian mixture
models with different between-replicates variance structures were defined to analyse the
real-world datasets. There are some worthy points of note about using this approach: (i) if
the between-replicates variability is high, the improvement in precision achieved by perform-
ing only two experimental replicates could be dramatic; (ii) precise modelling of intra-gene
variability is important for accurate identification of co-expressed genes; and (iii) the overall
performance of the infinite mixture model with the 'elliptical' between-replicates variance
structure was better than that of any of the other tested methods; it is also capable of identifying
the underlying structure of data without knowing the ‘correct’ number of clusters.

19.6 Graph-based Clustering

Rives and Galitski investigated the organisation of interacting proteins and protein complexes
into networks of modules and a network clustering method was developed to identify modules
(Rives and Galitski, 2003). The yeast protein-interaction networks were represented as graphs
of vertices and edges, corresponding to proteins and interactions, respectively. The network
clustering method was developed based on the following ideas: (i) the shortest path between
any two vertices is likely to be the most relevant one for functional associations and information
transmission; (ii) each vertex in a network has a unique profile of shortest-path distances
through the network to every other vertex; and (iii) module co-members are likely to have sim-
ilar shortest-path distance profiles. Each edge in the biological network was assigned a length of
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one. An all-pairs-shortest-path distance matrix was calculated by using standard algorithms. The
all-pairs-shortest-path matrix contains the length of the shortest path between every pair of
vertices in the network. Each distance in the all-pairs-shortest-path matrix was transformed into
an association as 1/d2, where d is the shortest-path distance. The resulting associations range from
0 to 1. The association of vertices that have no connecting path was defined as 0. The network
clustering algorithm simply was hierarchical agglomerative average-linkage clustering. The
association matrix was clustered identically in both dimensions. This method was validated
by using functionally enriched high-throughput datasets. The network of yeast filamentation
proteins was analysed by the network clustering algorithm and the complexity of the network
was reduced to a small number of connected units of structure and function. This simplified
representation facilitates the exploration of biological system properties in terms of interactions.
Wilkinson and Huberman developed a text-mining technique for the biological literature that

produced detailed results while extracting simple data from each article abstract and title
(Wilkinson and Huberman, 2004). The method created a network of gene symbol co-
occurrences from Medline articles and partitions this network into communities. Gene symbol
mentions were first extracted from almost 12.5 millionMedline article titles and abstracts. Then
sets of genes found to be statistically correlated to a set of user-selected keywords were
selected. Networks were subsequently created from these sets of genes. In the network, each
node represents a gene, and an edge connects two genes if they co-occur in at least one article.
The degree distribution of the networks follows a power law. The network partitioning was
based on the process of Girvan and Newman (2002), which was shown to give very good
results for variety. The genes within a community were weighted, indicating how strongly they
belonged to the community. The communities produced in the case of colon cancer gave one
insight into the function of the component genes.
The identification of functional modules from genome-wide information, such as transcrip-

tion profiles or protein interactions, is an important goal of functional genomics. Pereira-Leal
and colleagues successfully isolated 1046 functional modules from the known protein-
interaction network of budding yeast involving 8046 individual pair-wise interactions by using
an entirely automated and unsupervised graph-clustering algorithm (Pereira-Leal, Enright and
Ouzounis, 2004). This system biology approach was able to detect many well-known protein
complexes or biological processes, without reference to any additional information. Since the
objective was to isolate functionally coordinated interactions, the algorithm took a graph, con-
sisting of edges connecting nodes, and produces its associated line graph, in which edges rep-
resent nodes and nodes represent edges. The line graph generated has a number of advantages
for graph clustering: (i) it does not sacrifice information content because the original bidirec-
tional network can be recovered, (ii) it takes into account the higher-order local neighbourhood
of interactions, and (iii) hence, it is more highly structured than the original graph. The protein-
interaction network is derived from the yeast subset of the Database of Interacting Proteins
(DIP), which is appropriate because it contains curated interactions from both small- and
large-scale experimental studies. A weighted network of proteins connected by interactions
was formed based on the data, where the weights qualitatively reflected the confidence that
was attributed to each interaction based on the amount of experimental evidence supporting
it. An algorithm, called TribeMCL, which has been introduced in Chapter 16, was used for
graph clustering by graph flow simulation to cluster the interaction network and recover clus-
ters of associated interactions. Clusters were validated by assessing the consistency of protein
classifications within an individual cluster. Many detected clusters represented previously
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characterised functional modules. One example was a high-scoring cluster containing the mito-
chondrial F1-F0ATP synthase complex. In this cluster, all known protein interactions related to
the formation of this complex were recovered.

19.7 Consensus Clustering

Cluster analysis of microarray datasets may suffer from lack of inter-method consistency in
assigning related gene expression profiles to clusters. Obtaining a consensus set of clusters
from a number of clustering methods may improve confidence in gene expression analysis
(Abu-Jamous et al., 2013). Monti and colleagues developed a methodology of class discovery
and clustering validation tailed to the task of analysing gene expression data (Monti et al.,
2003). Monti’s resampling algorithm has been discussed in Chapter 17. In their study, the
resampling-based consensus clustering was investigated in six real gene expression datasets,
namely leukaemia dataset (Golub et al., 1999), Novartis multi-tissue (Su et al., 2002), St. Jude
leukaemia (Yeoh et al., 2002), lung cancer (Bhattacharjee et al., 2001), central nervous system
tumours (Pomeroy et al., 2002), and normal tissue (Ramaswamy et al., 2001). In general,
when applied to gene expression data, consensus clustering with hierarchical clustering
outperformed consensus clustering with SOM.
Swift and colleagues developed a consensus clustering algorithm, which provided the

advantage of improving confidence (Swift et al., 2004). The weighted-kappa metric, which
was originally proposed by Cohen (1968), was used as a direct measure of similarity of
partitions. A consensus strategy was applied both to produce robust and consensus clustering
of gene expression data and to assign statistical significance to these clusters from known gene
functions. The method is different from the resampling method (Monti et al., 2003), which we
discussed before, in that different clustering algorithms are used rather than perturbing the gene
expression data for a single algorithm. Using consensus clustering with probabilistic measures
of cluster membership derived from external validation with gene function annotations, spe-
cific transcriptionally co-regulated genes from microarray data of distinct B-cell lymphoma
types (Jenner et al., 2003) were identified accurately and rapidly.
Brannon and colleagues analysed gene expression microarray data using software that

implements iterative unsupervised consensus clustering algorithms to identify the optimal
molecular subclasses, without clinical or other classified information (Brannon et al., 2010).
Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, but even within this
classification the natural history is heterogeneous and difficult to predict. ConsensusCluster
was proposed by Seiler and colleagues (2010) for the analysis of high-dimensional single-
nucleotide polymorphism (SNP) and gene expression microarray data. The software imple-
mented the consensus clustering algorithm and principal component analysis (PCA) to stratify
the data into a given number of robust clusters. The robustness is achieved by combining clus-
tering results from data and sample resampling as well as by averaging over various algorithms
and parameter settings to achieve accurate, stable clustering results. Several different clustering
algorithms have been implemented, including k-means, partitioning around medoids (PAM),
SOM, and hierarchical clustering methods. After clustering the data, ConsensusCluster gener-
ates a consensus matrix heat map to give a useful visual representation of cluster membership,
and automatically generates a log of selected features that distinguish each pair of clusters. Such
consensus clustering analysis identified two distinct subtypes of ccRCC, designated clear cell
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types A and B. In each subtype, logical analysis of data defined a small, highly predictive gene
set that could then be used to classify additional tumours individually. The subclasses were
corroborated in a validation dataset of 177 tumours and analysed for clinical outcome. Based
on individual tumour assignment, tumours designated type A had markedly improved disease-
specific survival compared with type B. Using patterns of gene expression based on a defined
gene set, ccRCC was classified into two robust subclasses based on inherent molecular features
that ultimately corresponded to marked differences in clinical outcome. This classification
schema thus provided a molecular stratification applicable to individual tumours that may have
implications to influence treatment decisions, define biological mechanisms involved in
ccRCC tumour progression, and direct future drug discovery.

19.8 Biclustering

Although the concept of biclustering may trace back to the 1970s, it did not attract much
attention until it was successfully applied in bioinformatics, particularly to cluster the gene
expression datasets in both dimensions; that is, genes and samples (Cheng and Church,
2000). Thereafter, there has been a rich literature of applications for data analysis using
biclustering, and most algorithms, which were listed in Table 18.1, have been applied to the
applications in bioinformatics. We will only choose a few examples to discuss. Interested
readers are suggested to refer to the references in Chapter 18.
Tchagang and colleagues employed a biclustering algorithm for group biomarkers identifi-

cation using microarray gene expression data of ovarian cancer (Tchagang et al., 2008). Ovar-
ian cancer is a deadly disease because it is not usually diagnosed until it has reached an
advanced stage. The objective of this study was to identify group biomarkers that can be used
for the diagnosis of early-stage and/or recurrent ovarian cancer. Group biomarkers were
extracted from the gene expression data of over 400 normal, cancerous and diseased tissues
by using robust biclustering, which was proposed Tchagang and Tewfik (2006). The gene
expression matrix was organised as three sub-matrices: matrix A is a 12651 × 62 matrix that
represents the gene expression of the 62 normal ovary tissue samples and 12651 known genes
using the Affymetric GeneChip HG_U95A; matrix B = B1,B2, B3 is a 12651 × 45 matrix that
represents the gene expression of the 45 ovarian cancer tissues; and matrix C is a 12651 × 319
matrix that represents the gene expression of the 319 non-ovarian tissues. Biomarkers specific
for ovarian cancer should be highly expressed in ovarian cancer samples and low or absent in
other samples, including normal ovaries and non-ovarian tissues. For each sub-matrix, the
robust biclustering algorithm was used to identify biclusters with constant values; that is, a sub-
set of genes whose expression level stays constant across a subset of conditions or tissue sam-
ples. The receiver operating characteristics (ROC) curves were also employed to identify single
or group biomarkers. In this study, both healthy ovarian and non-ovarian tissues were consid-
ered in the definition of specificity. Using these methods, the study identified many significant
patterns that encode for secreted proteins, membrane proteins, and extracellular matrix pro-
teins, which clearly discriminate between the gene expression data of ovarian cancer, normal
ovary and non-ovarian tissues.
Huttenhower and colleagues proposed the combinational algorithm for expression and

sequence-based cluster extraction (COALESCE) system for regulatory module prediction
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(Huttenhower et al., 2009). The assumptions, which are valid in unicellular systems, imply that
regulation often occurs based on well defined transcriptional factor binding sites and discrete
activation or regression of transcription. However, the difficulty for complex organisms is that
these assumptions no long hold and predicting regulatory modules from expression data
becomes an increasingly challenging problem. The objective of this study was to discover
expression biclusters and putative regulatory motifs in metazoan genomes and very large
microarray conditions. By using Bayesian data integration, diverse supporting data types such
as evolutionary conservation or nucleosome placement can be included as a potential method to
enhance the prediction ability. The basic COALESCE algorithm consumes gene expression
and DNA sequence data as input to produce putative co-regulated modules as output. Each
resulting module consists of a set of co-regulated genes, one or more expression conditions
under which they are co-expressed, and zero or more motifs predicted to drive the co-regulation.
The algorithm finds modules in a serial manner by seeding each new module with a set of
co-expressed genes and iteratively refining the module to convergence. COALESCE was
evaluated using both real datasets and synthetic datasets and the results showed its effectiveness
in predicting regulatory modules.
Bryan and colleagues were the first who applied the technique of biclustering to model func-

tional modules within an integrated microRNA (miRNA)-mRNA association matrix (Bryan
et al., 2014). MiRNAs are small non-coding RNA molecules that regulate gene expression
at a post-transcriptional level through the binding of their seed region to complementary
sequences in the 3’ UTR of a target mRNA followed by subsequent degradation and/or trans-
lational inhibition of the mRNA transcript. Given that miRNA-directed binding of RNA-
induced silencing complex may result in the degradation of the target mRNA, it is possible
to determine miRNA targets by examining significant inverse correlations between miRNA
and mRNA expression data. The first step of the overall analysis pipeline in the study
(Bryan et al., 2014) was to integrate miRNA and mRNA expression datasets and compile a
two-dimensional matrix for all possible combinations of miRNA and mRNA expression. In
the ideal case, the matrix contains values −1, representing direct inversely correlated inter-
actions, +1, representing indirect positively correlated interactions, and 0, representing no
correlations. A biclustering algorithm based on the simulated annealing search method was
used to locate highly correlated biclusters with an miRNA-mRNA association matrix. This
method was applied to investigate the interplay of miRNAs and mRNAs in integrated datasets
derived from neuroblastoma and human immune cells. Results provided evidence of an
extensive modular miRNA functional network and enabled characterisation of miRNA
function and dysregulation in disease.

19.9 Summary

To sum up, we studied eight clustering families in Part Four and many algorithms in these
families have been applied in the field of bioinformatics. In this chapter, which is the last chap-
ter in Part Four, we discussed many examples in bioinformatics using different clustering
families; for example, to discover new diseases by sample-based clustering, to discover new
annotations for genes or biomarkers by gene clustering, to discover modules in a biological
network by graph-based clustering, and to discover the regulatory properties by DNA sequence
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clustering. These clustering algorithms, as one kind of primary exploratory tool, play a signif-
icantly important role in biological data analysis. Nonetheless, it is worth noting that clustering
is only one of the processing stages in the overall pipeline of data analysis. In Part Five, we will
introduce other important stages in the pipeline, namely validation and visualisation.
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20
Numerical Validation

20.1 Introduction

Part Four systematically introduced and discussed many widely used clustering methods in
bioinformatics. Now let us look at another important aspect of clustering analysis, namely
validation. This chapter will describe numerical validation techniques and the next chapter will
introduce biological validation techniques.
As we have mentioned in Part Four, clustering is also known as unsupervised learning.

Therefore, there is no existing guideline to guarantee an optimal clustering and it is still an open
question how to tell that a clustering algorithm or a clustering result is better. Thus, the task of
assessing the results of clustering algorithms can be as important as the clustering algorithms
themselves. The procedure for evaluating clustering algorithms and their results is known as
cluster validation (CV) (Halkidi, Batistakis and Vazirgiannis, 2002a, b). There have been a
lot of CV algorithms in the literature since the 1960s (Milligan and Cooper, 1985). Most CV
algorithms can be classified into three classes (Halkidi, Batistakis and Vazirgiannis, 2002a,
b), namely external criteria, internal criteria and relative criteria.

External criteria imply that the results of a clustering algorithm are evaluated based on a pre-
specified structure, which is imposed on a dataset to reflect the clustering structure of the data-
set. In other words, external criteria rely on the a priori knowledge or ground truth about the
dataset. We will introduce four indices in this class, namely Rand index (RI) and its derivative
adjusted Rand index (ARI), Jaccard index (JI) and normalised mutual information (NMI).
Internal criteria evaluate the clustering algorithms in terms of the inner structures of the data-

sets themselves, rather than a priori knowledge. The common strategy of this class of algorithms
is re-sampling. This class of algorithms may have good estimates of the number of clusters in a
dataset and also have good indication of the effectiveness of clustering algorithms. We will
introduce figure of merit (FOM) and CLEST as criteria of this class.
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Relative criteria evaluate the clustering partitions by the relative relationship between compact-
ness and separation. Different from both external criterion and internal criterion, there are two
ingredients for relative criterion, one of which is that clustering partitions, rather than clustering
algorithms, are evaluated in terms of the index values, and the other is that the index values are
relative values of compactness versus separation. Relative criteria can be further classified into
many subclasses including model-based indices, fuzzy validity indices and crisp validity indices.
We introduce minimum message length (MML), minimum description length (MDL), Bayesian
information criterion (BIC) and Akaike’s information criterion (AIC) in model-based indices. In
fuzzy validity indices, wewill introduce partition coefficient (PC), partition entropy (PE) (PC and
PE are two indices that involve only the membership values), Fukuyama–Sugeno (FS) index and
Xie–Beni (XB) index. Crisp validity indices include Calinski–Harabasz (CH) index, Dunn’s
index (DI), Davies–Bouldin (DB) index (DB is the counterpart of XB in crisp clustering), I index
(II), silhouette, object-based validation (OBV-LDA) (where LDA stands for linear discriminant
analysis), the geometrical index (GI) and the validity index (VI).
Suppose that N gene expression data objects are formalised as numerical vectors

xn = xnm m= 1,…,M; n = 1,…,N , where M is the number of features (here, ‘features’
represent different experimental conditions or different time points or different samples from
different tissues/organisms) and xnm is the value of themth feature for the nth object. We define
Z= zn n = 1,…,N as a partition and zn 1,…,K , where K is the number of clusters.
Partitions can also be represented as a partition matrix UN ×K = uk,n k = 1,…,K; n = 1,…,N .
In the crisp partitions, the nth gene belongs to the kth cluster if the binary entry uk,n of
the partition matrix is one, otherwise the gene does not; while in fuzzy partitions, the entry
uk,n 0,1 represents the degree to which the nth gene belongs to the kth cluster. Additionally,
partitions can be represented as a cluster set C= C1,…,CK , where Ck denotes the kth cluster
and k = 1,…, K. The number of members in the kth cluster is nk.

20.2 External Criteria

20.2.1 Rand Index

RI was proposed by Rand (1971) to measure the similarity between two partitions. Given the
ground truth as the reference partition, wemay calculate the index value fromwhich we are able
to find how far the target partition is away from the ground truth. Suppose that we have the
reference partition Zr = zri i = 1,…,N and zri 1,…,Kr , where Kr is the number of clusters
of the reference partition.
Before calculating RI, we have to define a few more variables as follows:

1. TP denotes true positives, the number of pairs of objects that are in the same cluster in both
Zr and Z;

2. TN denotes true negatives, the number of pairs of objects that are in different clusters in both
Zr and Z;

3. FN denotes false negatives, the number of pairs of objects that are in the same cluster in Zr

but in different clusters in Z;
4. FP denotes false positives, the number of pairs of objects that are in different clusters in

Zr but in the same cluster in Z.
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Thus, the RI is given by Equation (20.1).

RI =
TP +TN

TP+ TN +FN +FP
=
TP +TN

N
2

20 1

Apparently, (TP + TN) is considered as the degree of agreement and (FN + FP) is considered as
the degree of disagreement. The RI has a value between 0 and 1, with 0 indicating that the two
partitions do not agree on any pair of objects, and 1 indicating that the partitions are exactly
the same.

20.2.2 Adjusted Rand Index

The ARI was proposed by Hubert and Arabie (1985) assuming that the generalised hyper-
geometric distribution is considered as the model of randomness.
Suppose that the reference cluster set is Cr = Cr

k k = 1,…,Kr ; we define a contingency
table (Table 20.1)

where nij = Ci Cr
j and S denotes the cardinality, which is the number of members of the

set S. The ARI thus is given by Equation (20.2).

ARI =
Index−Expected Index

MaxIndex−Expected Index

=
ij

nij
2

−
i

ai
2 j

bj
2

N
2

1
2 i

ai
2

+
j

bj
2

−
i

ai
2 j

bj
2

N
2

20 2

Different from the RI, the ARI can yield negative values if the index is less than the
expected index.

Table 20.1 Contingency table

C \Cr Cr
1 Cr

2 Cr
K r Sums

C1 n11 n12 n1Kr a1
C2 n21 n22 n2Kr a2

CK nK1 nK2 nKK r aK

Sums b1 b2 bKr N
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20.2.3 Jaccard Index

The JI, also known as Jaccard coefficient, measures the similarity between two partitions. The
JI is defined as the cardinality of the intersection of two partitions divided by the cardinality of
their union, which is written as Equation (20.3).

JI =
Cr C
Cr C

20 3

Alternatively, one can calculate the Jaccard distance (JD), which measures the dissimilarity
between two partitions, written as Equation (20.4),

JD =
Cr C − Cr C

Cr C
20 4

and the JI is equal to (1 – JD). Using MATLAB, we can obtain the JD easily by the function
pdist(…, ‘jaccard’) and then JI = 1 – JD.

20.2.4 Normalised Mutual Information

Mutual information is a symmetric measure to quantify the statistical information shared
between two distributions. It provides a sound indication of the shared information between
a pair of partitions. Let I(Cr,C) denote the mutual information between reference partition Cr

and target partition C. Since I(Cr,C) has no upper bound, a normalised version of I(Cr,C) is
desired. Let us write I(Cr,C) as in Equation (20.5),

I Cr,C =H Cr +H C −H Cr,C 20 5

whereH denotes the marginal entropy andH , is the joint entropy. Thus, the NMI is given
by Equation (20.6).

NMI =
I Cr,C

H Cr H C
20 6

The NMI ranges from 0 to 1.

20.3 Internal Criteria

20.3.1 Adjusted Figure of Merit

The adjusted Figure of Merit (adjusted FOM) was developed based on the FOM (Yeung,
Haynor and Ruzzo, 2001). It is worth noting that adjusted FOM is used to evaluate the
clustering algorithms rather than the partitions. The basic idea of adjusted FOM is similar to
leave-one-out cross-validation in machine learning and a small adjusted FOM value indicates
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a strong prediction power of a clustering algorithm. Suppose that we have a clustering algo-
rithm to evaluate; we apply the clustering algorithm to all but one feature in the dataset and
use the left-out feature to assess the predictive power of the clustering algorithm.
Suppose that the clustering algorithm is applied to the dataset with 1,…, m−1 ,

m+ 1 ,…,M features and leaves the mth feature out. We group the dataset into k clusters
C= C1,…,Ck . Let E(n,m) be the expression of the mth feature of the nth gene in the original
dataset. We denote μci m as the average expression of the mth feature in the ith cluster.
We may obtain the FOM for all genes at the mth feature with k clusters F(m, k) as shown in
Equation (20.7).

F m,k =
1
N

k

i = 1 n Ci

E n,m −μci m
2

20 7

Thus, we obtain the FOM as an estimate of the total predictive power of the clustering algorithm
over all features with k clusters in the datasets, written as given in Equation (20.8).

FOM k =
M

m= 1

F m,k 20 8

The FOM has a critical problem, however, which is that increasing the number of clusters tends
to decrease the FOM. To deal with this problem, the adjusted FOM (AFOM) was defined to
correct the FOM, written as shown in Equation (20.9).

AFOM k =
FOM k

N−k N
20 9

There are two strengths of the adjusted FOM: one is that it is able to evaluate the clustering
algorithm in a given dataset in the fashion of cross-validation; another one is that it is accurate
in estimating the number of clusters of the dataset. The adjusted FOM also has two drawbacks:
one is that it is relatively complex due to its re-sampling nature; another is that since the curve of
the adjusted FOM against the number of clusters has a ‘knee’ shape, determining the best num-
ber of clusters is somewhat subjective.

20.3.2 CLEST

CLEST was proposed by Dudoit and Fridlyand to estimate the number of clusters for micro-
array datasets (Dudoit and Fridlyand, 2002). It randomly and iteratively partitions the original
dataset in a learning setL and a training set T . The learning setL is partitioned by the cluster-
ing algorithm into C(L), and the partition C(L), in turn, is used to build a classifier and derive
‘gold standard’ partition of the training set C (T ). That is, the classifier is assumed to be a
reliable model for the data. It is then used to assess the quality of the partition of the training
set C(T ) obtained by a given clustering algorithm.
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Suppose that the maximum number of clusters in the given dataset is Kmax. For each number
of k, 2 ≤ k ≤ Kmax, the CLEST is performed in the following four steps:
Repeat the following B times:

1. Randomly split the given dataset into two non-overlap subsets: a learning set Lb and a
training set T b.
a. Apply a clustering algorithm to the learning set Lb to obtain a partition C(Lb).
b. Build a classifier using the learning set Lb and its partition C(Lb).
c. Apply the resulting classifier to the training set T b to obtain a partition C b (T b).
d. Apply the clustering algorithm to the training set T b to obtain a partition C(T b).
e. Take C b (T b) as a reference and compute the similarity sk,b between C b (T b) and

C(T b) using an external index.
2. Let tk =median sk,1,…,sk,B denote the observed similarity statistic for the k-partition clus-

tering of the dataset.
3. Generate B0 datasets under a suitable null hypothesis. For each reference dataset, repeat

steps 1 and 2 above, to obtain B0 similarity statistics tbk b = 1,…,B0 .

4. Let t0k denote the average of these B0 similarity statistics, as 1 B0
B0
b = 1t

b
k . Let pk denote the

proportion of tbk b = 1,…,B0 that are as large as the observed similarity statistic tk. Let
dk = tk − t0k denote the difference between the observed similarity statistic and its estimated
expected value under the null hypothesis of K = 1.

CLEST has a very severe limitation on large datasets due to its high computational
demand.

20.4 Relative Criteria

20.4.1 Minimum Description Length

The problem of model selection is one of most important problems in inductive and statistical
inference. The MDL method, which was proposed by Rissanen (1978, 1986), has been widely
employed as one of most popular generic solutions to the model-selection problem (Hansen and
Yu, 2001; Grünwald, Myung and Pitt, 2005; Grünwald, 2007). The principle of parsimony, or
so called Occam’s razor, is the soul of model selection. The principle of MDL is based on the
insight that finding as much regularity of data as we can enables us to compress data as much as
possible. More specifically, MDL aims to choose the model that gives the shortest description
of the data.
MDL is designed to correspond to probability models or distributions and to emphasise the

description length interpretation of these distributions. The crucial aspect of theMDLmethod is
found in the code or description length interpretation of probability distributions. The descrip-
tion length is defined as LQ = − logQ, where Q is a distribution. From a coding perspective,
MDL coincides with the maximum likelihood (ML) principle that maximises p X θ (MDL
minimises − log p X θ ), when both transmitter and receiver know which parametric family
generated the data X. In modelling applications, however, we have to transmit the parameters
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θ and the description length of θ has to be added into the cost, which is written as given in
Equation (20.10),

L= − log p X θ + L θ 20 10

where L(θ) is the code length needed to describe the parameters θ. The lower bound of the
redundancy of the parameters corresponds to the price that one must pay for not knowing which
member of the model class generated the data X. It was demonstrated that for a regular para-
metric family of dimension k, its redundancy amounts to at least Np/2 log N extra bits, where
Np is the number of parameters. Any code length that achieves this lower bound qualifies as
a valid description length of the model class given a data string X, and the associated model-
selection criteria have good theoretical properties.

20.4.2 Minimum Message Length

The MML criterion is one of the minimum encoding length criteria (Wallace and Boulton,
1968; Wallace and Dowe, 1999), like MDL, and is used as the clustering-selection algorithm.
The rationale behind minimum encoding length criteria is that if one can build a short code for
any given data, it implies that the code is a good model for fitting data. The shortest code length
for set {X} is − log p X θ . If p X θ is fully known to both the transmitter and receiver, they
can both build the same code and communication can proceed. However, if θ is a priori
unknown, the transmitter has to start by estimating and transmitting θ. This leads to a two-part
message, whose total length is given by Equation (20.11).

Length X,θ =Length X θ +Length θ 20 11

All minimum encoding length criteria state that the parameter estimate is the one minimising
Length(X, θ). The criterion was derived to the following form [Equation (20.12)],

Length X,θ =
Np

2

K

k = 1

logαk +
Np + 1
2

K logN− log p X θ +C 20 12

where Np is the number of parameters which is required in each component, αk 1 ≤ k ≤K

is the mixing probability of the kth component with the constraint
K

k = 1
αk = 1, and

C = Np + 1 K 1− log 12 2 is a constant. Note that the components with zero-probability in
αk have been eliminated and k is the number of non-zero-probability components.

20.4.3 Bayesian Information Criterion

The BIC, also known as the Schwarz criterion, was developed by Schwarz (1978) as a criterion
of model selection among a finite set of models. Assuming that data distribution is in expo-
nential family, the BIC added an asymptotic penalty of guessing the wrong model, which
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equivalently penalises the model with more parameters and discourages overfitting, into the
log-likelihood function, written as Equation (20.13).

BIC≈ log p X θ −
Np

2
logN 20 13

Note that, coincidently, the BIC is equivalent to the MDL criterion.

20.4.4 Akaike’s Information Criterion

The AIC proposed by Akaike (1974) is a measure of the quality of a statistical model with a
given dataset. The AIC is defined as given in Equation (20.14),

AIC = −2log p X θ + 2Np 20 14

and the best estimate is given by the model and the ML estimates of its parameters that give the
minimum AIC value.

20.4.5 Partition Coefficient

PC, which is proposed by Bezdek (1974), is one of the validation criteria for evaluating fuzzy
partitions. It is defined as shown in Equation (20.15).

PC=
1
N

K

k = 1

N

n = 1

u2k,n 20 15

20.4.6 Partition Entropy

PE is another validation criterion for evaluating fuzzy partitions proposed by Bezdek (1973),
which is defined as shown in Equation (20.16).

PE = −
1
N

K

k = 1

N

n = 1

uk,n log uk,n 20 16

20.4.7 Fukuyama–Sugeno Index

The FS index was proposed by Fukuyama and Sugeno (1989). FS exploits the concepts of
compactness and separation for fuzzy partitions, which is written as Equation (20.17),

FS K =VC K −Vs K 20 17

where VC(K) represents the compactness measure when the dataset is grouped into K clusters,

which is given by N
n = 1

K
k = 1u

m
k,n xn−ck

2, where ck =
N
n = 1u

m
k,nxn

N
n = 1u

m
k,n is the
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centroid of the kth cluster. Vs(k) is the degree of separation between clusters, which is written as
N

n = 1

K

k = 1
umk,n ck −c

2, where c=
K

k = 1
ck K. In general, an optimal K∗ is found by

solving min
K 2,N−1

FS K to produce the best clustering performance for the dataset X. Note

that m is the fuzzifier.

20.4.8 Xie–Beni Index

The XB index proposed by Xie and Beni (1991) is also a fuzzy validation criterion which
exploits the compactness and the separation. There are two differences between XB and the
aforementioned FS index: first, XB considers the ratio between the compactness and the sep-
aration; second, the definition of the separation of XB is different to that of FS. The XB for a
given dataset X with a partition with K clusters is mathematically written as Equation (20.18).

XB K =
VC K N

Vs K
=

N

n = 1

K

k = 1
umk,n xn−ck 2

N ×min
i, j

ci−cj
20 18

Similar to FS, an optimal K∗ is found by solving min
K 2,N−1

XB K to produce the best clustering

performance for the dataset X.

20.4.9 Calinski–Harabasz Index

The CH index was proposed by Calinski and Harabasz (1974) for crisp partitions. In Milligan
and Cooper (1985), a comprehensive performance comparison of 30 indices was carried out.
Among those indices, CH performed the best. Mathematically, CH is given by Equation (20.19),

CH K =
B K K−1
W K n−K

20 19

whereB(K) andW(K) are the between- andwithin-cluster sums of squares, withK clusters, which

are given by B K =
K

k = 1
nk ck−c

2 and W K =
K

k = 1 n Ck
xn−ck

2, respectively,

where nk is the number of members in the kth cluster.

20.4.10 Dunn’s Index

DI is a metric proposed by Dunn (1973). It is mathematically written as shown in
Equation (20.20),

DI K = min
1 ≤ i ≤K

min
1 ≤ j ≤K

δ Ci,Cj

max
1 ≤ k ≤K

Δ Ck
20 20
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where δ(Ci,Cj) is the minimum between-cluster dissimilarity between cluster i and cluster j,
given by Equation (20.21),

δ Ci,Cj = min
xi Ci,xj Cj

D xi,xj 20 21

where D(xi, xj) is the dissimilarity between xi and xj. Δ(Ck) is the largest within-cluster sepa-
ration of cluster k, given as Equation (20.22).

Δ Ck = max
xi,xj Ck

D xi,xj 20 22

Similar to other indices in relative criteria, DI is a ratio of between-cluster dissimilarity and
within-cluster dissimilarity and a larger DI value implies a better clustering partition.

20.4.11 Davies–Bouldin Index

DB is one of the indices in relative criteria, proposed by Davies and Bouldin (1979). It is a ratio
of within-cluster dissimilarity and between-cluster dissimilarity. DB can be mathematically
written as shown in Equation (20.23),

DB K =
1
K

K

k = 1

max
1 ≤ j ≤K

Sj + Sk
Mkj

20 23

where Sk is the average dissimilarity between objects and the cluster centroid within the kth

cluster, given by Sk = 1 Nk i ck
D xi,ck , and Mij is a between-cluster dissimilarity measure

between cluster i and cluster j, given by Mij =D ci−cj . The optimal K∗ is the one that mini-
mises DB(K) where K is in the range of (1,N].

20.4.12 I Index

IIwas proposed byMaulik andBandyopadhyay (2002). II iswritten as shown inEquation (20.24),

II K =
1
K
×
E1

EK
×DK

p

20 24

whereE1 = j
xj−c 2

and EK =
K

k = 1 j ck
xj−ck 2 , DK =maxKi, j ci−cj 2 and the power

p is a constant, which normally is set to be two. The optimal K∗ is the one that maximises II(K).

20.4.13 Silhouette

Silhouette statistic was proposed by Rousseeuw (1987) for evaluating clusters and determining
the optimal number. For the ith object, let a(i) be the average dissimilarity to other objects
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within its cluster, and b(i) is the average dissimilarity to objects in the nearest cluster besides
the so called ‘the nearest cluster’, defined by the cluster minimising the average dissimilarity.
Thus the silhouette statistic for the ith object in the given partition with K clusters is defined
by Equation (20.25).

Sil i, K =
b i −a i

max a i ,b i K

20 25

An object is well clustered if its silhouette statistic is large. If the task is to evaluate the whole
partition, we can simply average the silhouette statistics over the whole dataset as Sil K =

1 N
N

i= 1
Sil i,K . In MATLAB statistics toolbox, the silhouette subroutine is implemented

for silhouette statistic.

20.4.14 Object-based Validation

It is worth noting that silhouette index is one of very few object based validation indices, which
assign a validity value to each individual object. This capability distinguishes object based val-
idation indices from other indices. However, silhouette index is only suitable for crisp parti-
tions. Here, we introduce an object based validation based on linear discriminant analysis
(OBV-LDA) by Fa, Abu-Jamous and Nandi (2013), which can be used to validate both crisp
and fuzzy partitions.
Since clustering an individual object into a cluster is only challenged by its closest neigh-

bouring cluster, the CV problem can be simplified to a two-class classification problem. For
each object in dataset X, its validity value is given by Equation (20.26),

v n, K = log
DM xn,μ
DM xn,μ

20 26

where μ is the centroid of the closest neighbouring cluster of the nth object xn, μ is the centroid
of the cluster in which xn locates, andDM(a, b) denotes theMahalanobis distance between a and
b. Thus, we can obtain Equations (20.27) and (20.28),

DM xn,μ = xn−μ
TΣ−1 xn−μ 20 27

DM xn,μ = xn−μ
TΣ−1 xn−μ 20 28

where Σ is the combined covariance matrix of the nth object-locating cluster and its closest
neighbouring cluster, which is written mathematically as shown in Equation (20.29),

Σ=
L −1 Σ + L −1 Σ

L + L −2
20 29

where Σ is the covariance matrix for the local cluster, Σ is the covariance matrix for the
closest neighbouring cluster, and L and L are the cardinality of the local cluster and the
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neighbouring cluster, respectively. The covariance matrix for the kth cluster is obtained from
Equation (20.30).

Σk =
1

Lk−1

N

n = 1

umn,k xn−μk xn−μk
T 20 30

The quality of the whole partition can be assessed by averaging the OBV-LDA as shown in
Equation (20.31),

V K =
1
N

N

n = 1

v n,K 20 31

or the quality of one cluster, say the kth cluster, can be also assessed by means of
Equation (20.32).

V k =
1
Lk xn Ck

v n,K 20 32

20.4.15 Geometrical Index

GI was proposed in by Lam and Yan (2007), and is expressed as shown in Equation (20.33),

GI K = max
1 ≤ k ≤K

2
M

m= 1
λmk

2

min
1 ≤ j ≤K

ci−cj 2

20 33

where λ are the eigenvalues of the covariance matrix of the kth cluster. Note that the estimated
number of clusters with the GI value closest to zero is the best one.

20.4.16 Validity Index

VI, which was proposed by Salem, Jack and Nandi (2008), is mathematically written as shown
in Equation (20.34),

VI K =

K

i = 1
Iei

K

i = 1
Iai

20 34

where Iei = min
j= 1, j i

Ieij, where Ieij is the largest dissimilarity of the minimum spanning tree

(MST) between the ith cluster and jth cluster, representing the between-cluster separation;
Iai is the largest dissimilarity of the MST between two data objects inside the ith cluster,
representing the within-cluster scatter.
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20.4.17 Generalised Parametric Validity

The Generalised Parametric Validity (GPV) index was developed by Fa and Nandi (2011). By
introducing two tunable parameters α and β, the GPV index possesses better noise-resistance
ability compared with other indices in relative criteria. The rationale behind the GPV index is
that, in some noisy scenario, the boundaries among clusters are blurring, and, moreover, the
distances between boundary areas and the centre areas are more dominant in determining
the quality of a clustering result than are those only within centre areas or only within boundary
areas. Thus α and β are employed to control the proportion of objects in centre areas and bound-
ary areas, respectively.
A 2-D plane demonstration of the principle of GPV is depicted in Figure 20.1. The objects

marked by ‘x’ and ‘o’ belong to two different clusters. Three spaces, namely inner space, intra
outer space, and inter outer space, are defined. As shown in Figure 20.1, considering the cluster
with ‘x’ symbol, the darkest grey area is the inner space and the set of objects in this area is
denoted by A; the third darkest grey area is the intra outer space and the set of objects in this area
is denoted by B; the second lightest grey area is inter outer space and the set of objects in this
area is denoted by C. Correspondingly, the numbers of objects in these three spaces are defined
as Ni

k,N
o
a and No

e , which can be expressed as Equations (20.35),

Ni
k = αNk , No

a = βNk , No
e = β N−Nk 20 35

where Nk is the number of the objects in the kth cluster and is the ceiling operator.
The GPV index, then, can be mathematically written as in Equation (20.36),

GPV K,α,β =
K

k = 1

Ni
k

a= 1

Deak
Daak

20 36

Inner space (A)

Intra outer space (B)

Inter outer space (C)

Figure 20.1 Illustration of the GPV index. Symbols ‘x’ and ‘o’ represent two clusters. Considering ‘x’
cluster, the darkest grey area is the inner space, labelled by ‘A’; the third darkest gray is the intra outer
space, labelled by ‘B’; and the second lightest gray area is inter outer space, labelled by ‘C’
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whereDaak denotes a normalised intra-cluster dissimilarity, which is given by Equation (20.37),

Daak =

No
a

b= 1
D aak ,b

a,b
k

No
a

20 37

and Deak denotes a normalised inter-cluster dissimilarity for the ath inner end in the kth cluster,
which is given by Equation (20.38),

Deak =

No
a

c= 1
D aak ,c

a,c
k

No
a

20 38

where aak a= 1,…,Ni
k denote the inner space of the kth cluster Ak; for each object in the inner

space aak , we need to form subsets Ba
k = ba,bk b= 1,…,No

a andCa
k = ca,ck c= 1,…,No

e for the

object in the intra outer space and the inter outer space, respectively.

20.5 Discussion and Summary

In this chapter, we introduced more than 20 numerical CV algorithms and mentioned that
these CV algorithms are classified into three categories. They have their capabilities and advan-
tages to validate clustering; on the other hand, they have limitations and may fail in some
circumstances.
Here we summarise these CV algorithms and their pros and cons in Table 20.2. The capabilities

are listed in a formof questions aboutwhat clustering-validation jobs they can do andwhat require-
ments they need to complete the job; namely, if the ground truth is needed while validating, if the
clustering algorithms can be validated, if the partitions can be validated, if the fuzzy partitions can
be validated, if the crisp partitions can be validated, if the number of clustersK can be estimated, if
the object validity can be provided, if the single-cluster validity can be provided; if it has noise-
resistance ability, if it is probabilisticmodel-based criterion, andwhat the level of its computational
complexity is.We fill the Tablewith ‘Yes’ or ‘No’ to indicate if the algorithm has that capability or
not. There are also ‘?’ marks in the Table, meaning that it is not a definite ‘Yes’ or ‘No’.
Basically, the external criteria are undisputable validations: if we have ground truth at hand,

the external CV algorithms can easily provide how similar the target partition is to the ground
truth. However, requiring the ground truth is, on the other hand, a critical limitation, since the
ground truth is not available most of the time in real-life clustering applications. Another aspect
to be mentioned is that because of the nature of these partition-oriented CV algorithms, it is
impossible to judge if a clustering algorithm is good or poor by the validation result using a
single partition when the clustering algorithm is stochastic. This is the reason why we put
‘?’ in Table 20.2. It is the same with the relative CV algorithms.
Internal criteria represent another group of effective CV algorithms. They are excellent in

estimating the number of clusters, K, and in judging the effectiveness of the clustering algo-
rithms. However, because they commonly employ the re-sampling strategy, they have two lim-
itations: first, they are unable to validate the partitions; second, they cost a large amount of
computational power.
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Relative criteria cover a large group of CV algorithms. Some of them are information the-
oretic and model-based, some of them are designed for fuzzy partitions and some of them are
for crisp partitions. Their common advantages are that they are simple to calculate and they are
suitable for validating the partitions. However, sometimes some of them are not reliable
because of their simplicity. Among these relative criteria, silhouette index is the most widely
used VI for analysing microarray gene expression data (Horimoto and Toh, 2001; Hanisch
et al., 2002; Huang and Pan, 2006; Bandyopadhyay, Mukhopadhyay and Maulik, 2007).
It is worth noting that the recently proposed GPV is claimed to possess the noise-resistant
ability and to be superior to all other indices.
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21
Biological Validation

21.1 Introduction

The main objective of bioinformatic studies is to enhance our understanding of biology and
medicine. Having said that, the results from such studies need to be valid from a biological
point of view and not merely from a numerical and computational point of view. Therefore,
there is a need for techniques that both embody biologically relevant knowledge and results,
and guide downstream biological investigations. In the case of cluster analysis, the main com-
putational output is a group of clusters of genes (or proteins, or metabolites, etc.), possibly with
some associated meta-data such as clusters’ numerical quality measures. Biological validation
in this case can be performed by analysing the contents of the clusters in light of the already
established biological knowledge available in the literature. Although many parts of the results
are expected to be as yet undiscovered, statistical tests over the already discovered parts can
provide statistical measures quantifying how strongly the cluster conforms to such established
knowledge.
In this chapter, we present some of the commonly used techniques for clusters’ biological

validation and bioinformatic post-clustering analysis. This mainly includes gene ontology
(GO) analysis, upstream sequence analysis and gene-network analysis.

21.2 GOAnalysis

The Gene Ontology Consortium (GOC) runs the GO project, which assigns genes’ products
with terms from a controlled vocabulary of the processes in which they participate, their molec-
ular functions and the cellular components in which they localise (www.geneontology.org)
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(The Gene Ontology Consortium, 2000, 2013). Assignments are based on the literature and are
updated as new studies are conducted.
The terms are structured in a hierarchical manner in which there are three root terms, namely

‘biological process’, ‘molecular function’, and ‘cellular component’, with the GO identifiers
GO:0008150, GO:0003674 and GO:0005575, respectively. Each term has a unique identifier
with the prefix ‘GO:’ followed by seven numerical digits.
QuickGO is a useful tool to navigate through and visualise GO terms and their relations in a

graphical manner. This tool, which is available at the website www.ebi.ac.uk/QuickGO, is run
by the European Bioinformatics Institutes (EBI). By searching for the biological process term
‘positive regulation of nuclear division’, accessing its page, and then accessing the tab ‘Ances-
tor Chart’, a graph similar to the one in Figure 21.1 is obtained. In this figure, the main relation
between terms which defines the levels of hierarchy is the ‘is a’ relation. The relation ‘A is a B’,
where ‘A’ and ‘B’ are terms, indicates that ‘A’ is a subtype of ‘B’. For example, and as can be
seen in Figure 21.1, the term ‘cellular process’ is a subtype of the more general term ‘biological
process’, and the term ‘nuclear division’ is a subtype of the more general term ‘organelle fis-
sion’. Indeed, by transitivity, a child term is a subtype of its ancestor terms, as well as the ances-
tors of its ancestors. For example, the term ‘nuclear division’ is a subtype of the terms ‘cellular
process’ and ‘biological process’ by transitivity. A single term may have more than one direct
ancestor, and an ancestor may have more than one child.
Another type of relations is the ‘part of’ relation, which indicates that a term is always part of

another term. For example, as in Figure 21.1, ‘nuclear division’ is always part of ‘cell division’
in eukaryotes; that is, as part of performing cell division, the nucleus needs to be divided. Reg-
ulation, whether it was positive or negative, represents another type of relation between terms.
This relation appears when the process represented by one term regulates, that is, controls the
activity of, the process represented by its target terms. For example, and as can be intuitively
inferred from its name, the process ‘regulation of nuclear division’ regulates the process
‘nuclear division’. Some of such regulation relations are labelled as either positive or negative,
while some others are not limited to one of those two options.
Similar to Figures 21.1, Figure 21.2 shows a sub-graph considering the direct children and all

ancestors of the molecular function term ‘mRNA binding’, and Figure 21.3 shows a sub-graph
considering the cellular component term ‘mitochondrion’ and its ancestors.
In contrast to the other relations, the relation ‘has part’ is directed from the parent to the child

and not vice versa. If ‘B’ has ‘A’ as part of it, the term ‘B’ will always involve ‘A’, while ‘A’
does not always occur as part of ‘B’; that is, ‘A’may occur independently of ‘B’. For example,
the molecular function ‘nucleic acid binding transcription factor activity’ in Figure 21.2 has the
molecular function ‘nucleic acid binding’ as part of it. This means that for the ‘nucleic acid
binding transcription factor activity’ function to be performed, ‘nucleic acid binding’ must
be performed as part of it, while ‘nucleic acid binding’ might be performed in other
contexts unrelated to transcription factor activity, such as during DNA repair or replication.
The same logic applies for the component ‘mitochondrion-associated adherens complex’ in
Figure 21.3, which is a complex always containing a ‘mitochondrion’ as part of it. Note the
difference between this irreversible type of relation and the aforementioned relation ‘part of’.
One more type of relation is the ‘occurs in’ relation (not shown in the provided figures).

If a process term ‘A’ has a relation of ‘occurs in’ with the component term ‘B’, the component
‘B’ represents the cellular component in which the process ‘A’ occurs. For example, the
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Figure 21.1 Sub-graph of GO biological process terms showing the process ‘positive regulation of
nuclear division’ in a shaded box, its direct children, and its ancestral relations up to the root term
‘biological process’. This graph can be obtained by searching the EBI QuickGO web tool (www.ebi.ac.
uk/QuickGO) for the GO term ID ‘GO:0051785’, and then accessing the ‘Ancestor Chart’ tab; the
direct link is (http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051785#term=ancchart). The graph
shows the names and GO term identifiers of the terms included, as well as colour-coded relations
between those different biological processes (See insert for color representation of the figure)
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process ‘GO:0032544 plastid translation’ has a relation of ‘occurs in’ with the component
‘GO:0009536 plastid’ because plastid translation actually occurs in plastids.

21.2.1 GO Term Enrichment

GO term-enrichment analysis is the analysis of a subset of genes or genes’ products (proteins)
in order to identify the GO terms which are significantly represented in this subset. Many tools
are available to perform GO term-enrichment analysis where some of them are specific to some
species, such as the Stanford University Saccharomyces Genome Database (SGD) term-finder
tool for Saccharomyces yeast at http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl,
while others are more general like the Princeton University term-finder tool at http://go.prince-
ton.edu/cgi-bin/GOTermFinder. Most of the available tools provide similar functionalities and
are used in similar ways. Therefore, the example provided below will be sufficient to introduce
this type of analysis in general.
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Figure 21.2 Sub-graph of GO molecular function terms showing the function ‘mRNA binding’ in a
shaded box, its direct children, and its ancestral relations up to the root term ‘molecular function’.
This graph can be obtained in a similar way to the graph in Figure 21.1 while considering the GO
term ID ‘GO:0003729’
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Clusters generated by clustering analysis are well suited subjects for GO term-enrichment
analysis. To demonstrate this, we have analysed the 172 budding yeast genes contained in
the cluster ‘C1’ generated by the Bi-CoPaM method (Abu-Jamous et al., 2013a) with dif-
ference threshold binarisation (DTB) at a tightness value of δ = 0.9 from the Supplementary
Table S1 of the recent study of Abu-Jamous et al. (2013b). This cluster of genes was sub-
mitted to the Princeton University GO term-finder tool while leaving all optional variables
to their default values. The tool requires specifying the type of GO terms to be investigated;
that is, biological processes, molecular functions or cellular components. In this instance,
we investigate biological process terms. The top part of the resulting Table is shown in
Figure 21.4.
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Figure 21.3 Sub-graph of GO cellular component terms showing the component ‘mitochondrion’ in a
shaded box and its ancestral relations up to the root term ‘cellular component’. This graph can be obtained
in a similar way to the graph in Figure 21.1 while considering the GO term ID ‘GO:0005739’. Because this
term has a large number of children terms, they are not shown in this sub-graph
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Gene Ontology term Cluster frequency Genome frequency
Corrected
p-value

FDR Genes annotated to the term
False

positives

DNA metabolic
process

58 of 172 genes,
33.7%

553 of 7166 genes,
7.7%

1.14e-20 0.00% 0.00

DNA-dependent
DNA replication

27 of 172 genes,
15.7%

119 of 7166 genes,
1.7%

9.70e-17 0.00% 0.00

Cellular response to
DNA damage
stimulus

40 of 172 genes,
23.3%

330 of 7166 genes,
4.6%

2.24e-15 0.00% 0.00

DNA repair 37 of 172 genes,
21.5%

280 of 7166 genes,
3.9%

2.75e-15 0.00% 0.00

YJL115W, YDL164C, YKL067W, YJR006W, YPR135W,
YNL312W, YOL090W, YLL002W, YNL273W, YDR545W,
YML060W, YDL003W, YNL339C, YMR048W, YBR073W,
YGR296W, YFL008W, YLR383W, YLL022C, YNL082W,
YJL074C, YPR018W, YMR078C, YER190W, YLR032W,
YDR097C, YLR154C, YML061C, YDR279W, YNL072W,
YBR275C, YBL035C, YJR043C, YNL102W, YMR075W,
YDL101C, YER070W, YAR007C, YGL163C, YOR033C,
YGL207W, YBR088C, YDL102W, YKL045W, YPR175W,
YIL066C, YLR467W, YKL113C, YER095W, YNL262W,
YLR103C, YLR466W, YCL061C, YHR154W, YMR076C,
YPL283C, YPL153C, YNL309W

Result table

Terms from the process ontology of gene_association.sgd with p-value <= 0.01

YDL164C, YDR279W, YNL072W, YBL035C, YJR006W,
YJR043C, YPR135W, YNL102W, YNL312W, YMR075W,
YDL101C, YAR007C, YNL273W, YGL207W, YBR088C,
YDL003W, YDL102W, YKL045W, YMR048W, YPR175W,
YKL113C, YMR078C, YLR103C, YNL262W, YCL061C,
YPL153C, YLR154C

YDL164C, YKL067W, YJR006W, YPR135W, YNL312W, 
YOL090W, YLL002W, YNL273W, YML060W, YDL003W,

YDL164C, YKL067W, YJR006W, YPR135W, YNL312W,
YOL090W, YLL002W, YNL273W, YML060W,  YDL003W,
YMR048W, YBR073W, YFL008W, YLR383W, YNL082W,
YMR078C, YLR032W, YDR097C, YML061C, YNL102W,
YJR043C, YDR501W, YDL101C, YAR007C, YGL163C,
YOR033C, YLR183C, YGL207W, YBR088C, YDL102W,
YKL045W, YPR175W, YKL113C, YER095W, YNL262W,
YLR103C, YCL061C, YMR076C, YHR154W, YPL153C

Figure 21.4 Sample table of GO biological process term enrichment results. The results are for a cluster of 172 budding yeast
genes representing the cluster C1 from the study (Abu-Jamous et al., 2013b) generated by the Bi-CoPaM method with the
DTB binarisation technique at the tuning parameter δ = 0.9. The genes can be obtained from Supplementary Table S1 of the
aforementioned study (Abu-Jamous et al., 2013b)



It can be seen in Figure 21.4 that the enriched biological process terms are ordered from the
most enriched to the least enriched based on their p-values, where lower p-values indicate
higher enrichment. All of the terms with p-values lower than a given threshold, whose default
is 0.01, are listed in the table while the rest are not. The first column of the table shows the term.
The second and the third columns show the cluster frequency and the background (genome)
frequency of the term, respectively. For example, the top term, ‘DNA metabolic process’, is
associated with 58 genes out of the 172 genes included in this cluster (33.7%), and is associated
with 553 genes out of the 7166 genes included in the entire budding yeast genome (7.7%). The
p-value in this case is based on the hypergeometric distribution. For example, the corrected
p-value of the ‘DNA metabolic process’ term, that is 1.14 × 10−20, indicates that this is the
probability of having 58 or more genes annotated to this particular term in a cluster of 172 genes
randomly selected from a set of 7166 genes which includes 553 genes annotated to this term.
The p-value correction is a statistical adjustment for the raw hypergeometric p-value to com-
pensate for the multiple-hypothesis testing problem. This aspect is discussed more thoroughly
in Chapter 9. The remaining columns respectively show the false-discovery rate (FDR), false
positives and the names of the genes in this cluster annotated to this term.
Default GO term-enrichment tools consider the entire genome (complete list of genes) in the

corresponding species when performing statistical analysis. Though, if the initial list of genes
considered in the study is much different, it is more accurate to provide the tool with this list as
the background list instead. For example, the aforementioned cluster of 172 genes was obtained
by performing clustering analysis over a selected subset of about 500 genes. Those approxi-
mately 500 genes represent the background set of this study, and would be provided to the tool
for more accurate analysis. Sample results of GO term-enrichment analysis while specifying
this background are shown in Figure 21.5.
By identifying the most enriched processes and/or functions and/or components of the genes

(or proteins) included in the cluster, the biological context of that cluster would be elucidated.
Staying with the same cluster of 172 yeast genes, it can be seen from its most enriched processes
that it is enriched with processes that manipulate the DNA for its replication. Replicating the
DNA is an essential step during the cell cycle and occurs at the end of the G1 stage and the
beginning of the S stage of the cycle. The average temporal expression profile of this cluster
is shown in Figure 21.6. This dataset includes the expression of yeast genes over 120 min cov-
ering two complete cell cycles. The number of samples is 25, and they are uniformly sampled
with 5-min spacing. Cell cycle-regulated genes are expected to show cyclic profiles over the
two cell cycles, and this is indeed the case of this cluster. By scrutinising the figure in light of
the dataset information provided by the dataset’s owners, Pramila and colleagues (2006), it can
be seen that the peak expression of this cluster occurs at the G1/S stage transmission, which
conforms well to the GO term-enrichment results.
It is also useful to identify the genes that are included in the cluster but have not been anno-

tated to any GO term yet; that is, genes with unknown biological processes. Those genes are
candidate subjects to downstream biological functional studies as they may be participating
in the same processes in which many of their peer genes in the cluster participate. However,
mere appearance in such clusters does not constitute sufficient evidence for those unknown
genes to be annotated to those terms; it rather focuses and guides following functional
studies.
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Gene Ontology term Cluster frequency Genome frequency
Corrected
p-value

FDR Genes annotated to the term
False

positives

DNA metabolic
process

58 of 172 genes,
33.7%

101 of 498 genes,
20.3%

6.76e-05 0.00% 0.00

Mitotic sister
chromatid cohesion

14 of 172 genes,
8.1%

14 of 498 genes,
2.8%

0.00015 0.00% 0.00

DNA repair 37 of 172 genes,
21.5%

56 of 498 genes,
11.2%

0.00020 0.00% 0.00

Cellular response to
DNA damage
stimulus

40 of 172 genes,
23.3%

64 of 498 genes,
12.9%

0.00059 0.00% 0.00

YJL115W, YDL164C, YKL067W, YJR006W, YPR135W,
YNL312W, YOL090W, YLL002W, YNL273W, YDR545W,
YML060W, YDL003W, YNL339C, YMR048W, YBR073W,
YGR296W, YFL008W, YLR383W, YLL022C, YNL082W,
YJL074C, YPR018W, YMR078C, YER190W, YLR032W,
YDR097C, YLR154C, YML061C, YDR279W, YNL072W,
YBR275C, YBL035C, YJR043C, YNL102W, YMR075W,
YDL101C, YER070W, YAR007C, YGL163C, YOR033C,
YGL207W, YBR088C, YDL102W, YKL045W, YPR175W,
YIL066C, YLR467W, YKL113C, YER095W, YNL262W,
YLR103C, YLR466W, YCL061C, YHR154W, YMR076C,
YPL283C, YPL153C, YNL309W

Result table

Terms from the process ontology of gene_association.sgd with p-value <= 0.01

YER016W, YIL026C, YFL008W, YJL074C, YPR135W,
YMR078C, YNL262W, YNL273W, YJL019W, YCL061C,
YBR088C, YDL003W, YMR076C, YMR048W

YDL164C, YKL067W, YJR006W, YPR135W, YNL312W, 
Y0L090W, YLL002W, YNL273W, YML060W, YDL003W,
YMR048W, YBR073W, YFL008W, YLR383W, YNL082W,

YDL164C, YKL067W, YJR006W, YPR135W, YNL312W,
YOL090W, YLL002W, YNL273W, YML060W, YDL003W,
YMR048W, YBR073W, YFL008W, YLR383W, YNL082W,
YMR078C, YLR032W, YDR097C, YML061C, YNL102W,
YJR043C, YAR007C, YGL163C, YOR033C, YGL207W,
YBR088C, YDL102W, YKL045W, YPR175W, YKL113C,
YER095W, YNL262W, YLR103C, YCL061C, YMR076C, 
YHR154W, YPL153C

Figure 21.5 Sample table of GO biological process term enrichment results with specified background list. The results are for the
same cluster of genes considered in Figure 21.4 but while specifying the background list of genes to be the approximately 500
genes originally considered by the study (Abu-Jamous et al., 2013b) as the starting point of analysis



21.3 Upstream Sequence Analysis

Levels of gene expression are usually controlled by different signals including the products of
other genes. A transcription factor, as discussed in Chapter 4, is a gene’s product which reg-
ulates, by activation or repression, the expression of other genes, or even the producing gene
itself. This regulation occurs by direct binding of the transcription factor to a specific DNA
sequence in the proximity of its target gene(s). It has been found that different transcription
factors have different binding sites, which are specific short DNA sequences that usually appear
in the upstream portion of the target gene, and are specifically bound by transcription factors for
regulation. Some transcription factors regulate large numbers of genes (e.g. tens or hundreds),
and many transcription factors cooperate in regulating other genes.
When many genes are regulated by the same transcription-regulatory machinery (one or more

cooperating transcription factors), they are expected to be co-expressed in many cases; that is, to
show similar expression profiles to each other. This resonates well with what clustering analysis
mines for, as clustering aims at identifying those subsets of genes that are co-expressed. There-
fore, searching the upstream sequences of the genes included in a cluster in order to identify the
DNA short sequences that significantly appear in such upstream sequences can help in identifying
potential transcription factors that regulate that cluster. Hence the relevance of upstream sequence
analysis to the validation and downstream analysis of clustering results.
Many tools facilitate upstream sequence analysis, such as the MEME suite, hosted at meme.

nbcr.net (Bailey and Elkan, 1994; Bailey et al., 2006), and the PAINT toolset, hosted at http://
www.jefferson.edu/university/jmc/departments/pathology/daniel-baugh-institute/paint.html
(Vadigepalli et al., 2003). The MEME suite (MEME stands for Multiple EM (Estimation
Maximisation) for Motif Elicitation) provides many motif-based sequence-analysis tools.
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Figure 21.6 Average gene expression of the 172 genes considered in Figures 21.4 and 21.5. The
horizontal axis represents time in minutes and the vertical axis represents log-ratio expression values.
There are 25 samples in this signal with 5-min spacing. The data, as provided by Pramila and
colleagues (Pramila et al., 2006), covers two budding yeast cell cycles over the 120 min of time, and
cell cycle-regulated genes are expected to show periodic signals over the two cycles; the shown
average signal is clearly periodic over the two cycles
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The main tool in this suite, also named as MEME, mines a group of provided sequences for
short DNA sequences (motifs) that significantly appear in them (Bailey and Elkan, 1994; Bai-
ley et al., 2006). Another tool in this suite, the TOMTOM tool, compares a given motif with
databases of motifs known in the literature, and identifies the known motifs that highly match
the query motif (Tanaka et al., 2011). It is facilitated within the suite to pass the discovered
motifs by the MEME tool directly as inputs to the TOMTOM tool. This pipeline of two-step
analysis can be semantically summarised as the discovery of the known motifs
that significantly appear in the upstream sequences of the given cluster of genes. Since known
motifs are usually defined as the binding sites of known transcription factors, such analysis
results in identifying a list of potential regulators of the given cluster of genes.
To demonstrate the application of this type of analysis, we have submitted the upstream 300

DNA bases of the genes in a cluster of 172 genes to the MEME tool. This cluster, which is the
same cluster of genes analysed in the previous section, is the cluster ‘C1’ generated by Abu-
Jamous and colleagues using the Bi-CoPaM method with the DTB technique’s parameter
δ = 0.9 (Abu-Jamous et al., 2013b). The contents of the cluster are available in Supplementary
Table S1 of that study (Abu-Jamous et al., 2013b).
The most enriched sequence motif in the upstream sequences of those 172 genes is shown in

Figure 21.7b. As explained in Chapter 3, DNA sequences are formed of four different nucleo-
bases referred to by the four letters A, T, C and G. Because the motif is extracted from the
upstream sequences in a statistical rather than all-inclusive way, the motif does not show the same
exact sequence in all instances; it rather possesses slight variations. The relative height of any base
letter at some given position in the logo reflects its frequency in the aligned motifs. The vertical
axis in the logo represents the information content of that position in the motif measured by bits
and calculated by the formula of Shannon’s entropy. This information content measures how sur-
prising the observation is when compared with the blind uniform selection of the four different
bases. There is zero information content when the position is equally occupied by each of the four

(a)

(b) Most enriched motif in the cluster of 172 genes under investigation
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Figure 21.7 Aligned logos for (a) the binding site of the transcription factor complex MBF (MBP1/
SWI6) and (b) the most enriched motif in the upstream sequences of the 172 genes in the cluster
under investigation
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bases at different instances of aligned sequences, while the highest information content (2.0 bits)
occurs when a single type of base consistently appears in all of the aligned sequences.
When the discoveredmotif in Figure 21.7b was submitted to the TOMTOM tool to search for

known motifs that most significantly match it, the binding site of the MBF transcription factor
complex was identified (Figure 21.7a). It can be seen in Figure 21.7 that there is a very strong
correlation between the discovered and the previously known motifs, with a p-value of 3.86 ×
10−6, as calculated by the TOMTOM tool. Therefore, by considering that the discovered motif
is the binding site of the MBF complex rather than merely considering it as a motif that highly
matches it, the transitive inferred statement becomes that the binding site of the MBF complex
highly appears in the upstream sequences of this cluster of genes.
The MBF complex constitutes two main proteins, MBP1 and SWI6. It is well known to be a

key transcription factor for the G1/S stage transition during the budding yeast cell cycle
(Bähler, 2005). As discussed and demonstrated in the previous section, this cluster of 172 genes
is highly enriched with genes that participate in processes that are required at the G1/S transi-
tion (e.g. DNAmetabolism), and its expression profile shows peak values at the G1/S transition
(Figure 21.6).
Taken together, the results of upstream sequence analysis biologically validate the cluster

that was generated computationally by the Bi-CoPaM method. Moreover, this biological val-
idation gives a deeper insight regarding the biological relevance of the cluster and establishes a
link that facilitates more intelligible discussions between computational and biological mem-
bers of a bioinformatic collaboration.

21.4 Gene-network Analysis

Many types of relations have been defined between genes as well as gene products. For instance,
and linking with the previous section, one gene’s product may be a positive or negative regulator
of another gene. Other types of relations include physical interactions between genes’ products,
genetic interactions, shared protein domains, co-localisation, co-expression and others. Indeed,
some of those relations are directed, such as regulatory relations in which one gene’s product
regulates another gene, while some other relations are undirected, such as physical interactions
in which the two products interact with each other.
Networks of genes are formed by considering genes (or their products) as nodes and the rela-

tions between them as edges. The University of Toronto-developed tool, GeneMANIA (Gene
Multiple Association Network Integration Algorithm), which is hosted at www.genemania.org,
is an interactive tool that builds various types of gene networks for a given subset of genes
(Warde-Farley et al., 2010; Zuberi et al., 2013). GeneMANIA stores a massive number of
gene–gene relations fetched from various high-throughput studies in the literature. Moreover,
this tool can identify extra genes which have high connectivity with the query genes.
To demonstrate the use of this tool, we submitted the same cluster of 172 genes which has

been considered in the two previous sections to GeneMANIA. Indeed, from the tool’s list of
species, we selected the S. cerevisiae (baker’s yeast) because those 172 genes are baker’s yeast
genes. By keeping advanced options to their default, the network in Figure 21.8 was obtained.
It is clear that there is a very large number of associations between the genes within this cluster.
The grey nodes are those genes which have been predicted by the tool as related to the cluster
because of their high connectivity with the cluster’s genes. Although it is hard to comprehend
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Figure 21.8 Network of multiple types of associations between the 172 yeast genes in the cluster under
investigation. The black nodes represent query genes, that is the 172 genes, while the grey nodes represent
predicted genes that have high connectivity with the query genes. Different types of genetic relations are
shown as different edge colours
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all of the links in this figure, zooming and filtering options are provided by the tool for a more
focused view. Additionally, the network’s contents can be downloaded as a vector image as
well as a tab-delimited text file, which provides the researcher with a digitised version of
the visual network, allowing for more customised scrutiny and analysis.
We will examine two types of gene–gene relations captured by GeneMANIA more closely to

demonstrate some types of downstream analysis.Wemodified the advanced options of the tool to
show only ‘co-expression’ interactions between genes, and to show only the query genes without
any extra predicted genes. The resulting network is shown in Figure 21.9. By downloading the list
of interactions in a tab-delimited text format and counting the number of edges (interactions), we
found that there are 8135 co-expression associations between those 172 genes. This represents
55% of the number of edges that would appear in a fully connected network of 172 genes, which
is 14 706.
This percentage cannot be confirmed to be a high, moderate or low value unless it is com-

pared with a reference. To do so, we have generated 22 different clusters, each of which
includes 172 randomly selected genes, and which were subjected to the same analysis by
the tool. The number of co-expression interactions in those 22 randomly generated clusters
had the mean of 5538 interactions with a standard deviation of 273. By assuming a normal
distribution, the probability of observing 8135 interactions or more (p-value) where the mean

Figure 21.9 Co-expression network of the 172 genes in the cluster under investigation

335Biological Validation



and the standard deviation are as given is 9.3 × 10−22. Thus, this subset of genes is indeed highly
enriched with co-expressed genes.
It may be argued that, because the number of edges in the network represents the number of

successful random binary events of the type ‘does the edge exist?’, it should be modelled by
using a binomial distribution instead of a normal distribution. The fact that those events are
highly dependent renders choosing the binomial distribution invalid. If some edges between
a small subset of genes exist, the probability that some of the remaining untested edges also
exist is higher than average. However, with 22 samples, normal distribution can be practically
applied.
Figure 21.10 shows another network between the 172 genes in the same cluster under

consideration. This network shows links between genes whose products (proteins) have been
shown to interact physically. There are 518 interactions (edges) in this network, again, out of
14 706 possible edges in a fully connected network. By following the same aforementioned
approach in comparing this network with a number of networks for randomly generated clusters
of the same size, it can be shown that this network is indeed significantly highly connected. The
average number of physical interaction edges in the tested 22 random networks is 122 with a
standard deviation of 53. Therefore, the normal distribution-based p-value is 9.3 × 10−15, which
is very small, evidencing that the given cluster of genes is indeed far from being generated by
mere chance when genes’ products’ interactions are concerned.

Figure 21.10 Physical interaction network of the products of the 172 genes in the cluster under
investigation
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21.5 Discussion and Summary

It is indeed important to validate clustering results from a numerical point of view, as discussed
in Chapter 20. However, when clustering is applied in bioinformatics, it is also important to
evaluate those results’ biological validity and relevance. Three different biological validation
approaches are presented in this chapter, namely, GO term-enrichment analysis, upstream
sequence analysis and gene-network analysis.
GO terms are a controlled vocabulary of terms referring to biological processes (e.g. cellular

division), molecular functions (e.g. DNA binding), or cellular components (e.g. nucleus).
Those terms are structured in a hierarchical manner with different types of relations between
them. For instance, a term may be a subtype of another term, part of it, a regulator of it, or has it
as one of its parts. Genes and their products are associated with those terms that different studies
in the literature have demonstrated sufficient evidence for their association with. Such associa-
tions are being actively updated as new studies emerge. GO term-enrichment analysis of a
given cluster of genes aims at identifying the terms with which a significant number of query
genes are associated.
Upstream DNA sequences of genes are targets of transcription factor proteins which bind

therein to regulate, that is control, the amount of expression of such target genes. Upstream
sequence analysis identifies the motifs (short sequences) of DNA which repetitively appear
in the upstream sequences of the genes in a considered cluster. By matching the discovered
motifs with the sequences to which known transcription factors bind, candidate transcription
factors would be identified as potential regulators of the cluster under investigation.
Gene networks are networks in which genes, or their products (proteins), are modelled as

nodes, while known interactions between them are modelled as edges. Different types of inter-
actions between genes, or genes’ products (proteins) have been defined in the literature such as
genetic interactions, co-expression, physical interactions between products, regulatory interac-
tions, co-localisation and others. Visualising the interactions already discovered by the research
community between the genes included in a cluster can be useful in evaluating the established
connectivity between such a subset of genes while considering different types of interactions.
All of the aforementioned approaches can be used to validate the inclusion of the genes

under consideration together in a cluster when they show significantly consistent relevance
to the same GO term or transcription factor’s binding site, or when they show high connectivity
in a gene network. However, the usefulness of those approaches does not stop at that level. Such
identified GO terms, transcription factors and networks put the cluster in its biological context
such as the biological processes and pathways in which the cluster seems to participate. Fur-
thermore, none of the databases of those approaches is absolutely complete; that is, not all of
GO terms that should be associated to each single gene in each single species have been actually
discovered, not all of the binding sites or the target genes of transcription factors have been
identified, and not all of the existing interactions between genes or their products have been
established. Consequently, identifying a GO term which is significantly associated with many
genes in a cluster that has some genes with unknown associations stimulates hypothesising
that the latter genes may be also associated with that same GO term. The same applies for those
transcription factors that have not been identified previously as regulators of some of the genes
in the cluster, or those missing links in a highly connected network of genes. Indeed, biological
validation bridges the gap between numerical clustering results and the biological research
community by providing them with biologically relevant hypotheses that represent starting
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points for their biological functional analysis. Although proving or disproving those hypoth-
eses is the task of biological functional analysis, drawing such focused hypotheses out of the
huge amounts of existing data is for sure the task of bioinformatics.
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22
Visualisations and Presentations

22.1 Introduction

In the previous chapters, we discussed the whole cluster analysis pipeline in bioinformatics,
including data acquisition, pre-processing, normalisation, feature selection, differential expres-
sion analysis, clustering, numerical validation and biological validation. As soon as we gather
the results discovered in the cluster analysis, and validate them numerically and biologically,
the ultimate goal is to publish the discovery and to see its impact on medicine development and
clinical therapies. Therefore, clear and informative visualisations and presentations play an
important role in helping people to understand the study.
The most widely used visualisation is a simple line plot, where the values presented by the

y-axis are outputs of a function with a variable presented by the x-axis. The output values are
connected by a line, which can be either solid or dashed. The line plot may give us a direct
impression on what the function looks like, and what the ‘trend’ looks like - up, or down or
periodic. Apart from the line plot, there are many other methods of visualisation and presenta-
tion. In this chapter, we discuss 15 methods of visualisation excluding the line plot, and we also
present examples of these methods with real applications of cluster analysis in bioinformatics.

22.2 Methods and Examples

22.2.1 Profile Patterns

Plotting the profile patterns directly is one of the simplest methods to visualise the clustering
results. Particularly, this method is appropriate for presenting the time series expression data
(can be either gene or protein). This method, actually, is a display of the collection of line

Integrative Cluster Analysis in Bioinformatics, First Edition. Basel Abu-Jamous, Rui Fa and Asoke K. Nandi.
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plots of data points in the same cluster. The quality of clustering can be roughly judged
by observing the shapes of the patterns and the tightness of the bundles. This method, how-
ever, is applicable to qualitative analysis only as it does not provide precisely quantitative
measurements.
Kwekel and colleagues conducted a study on gene expression in the kidney at various life

cycle stages in male F344 rats, as age is a predisposing condition for susceptibility to chronic
kidney disease and progression, and age-related differences in kidney biology are a key concern
in understanding drug safety and disease (Kwekel et al., 2013). In this study, Agilent whole-
genome rat microarrays were used to query global renal expression profiles of untreated male
F344 rats at 2, 5, 6, 8, 15, 21, 78 and 104 weeks of age. An ANOVA (p <0.01), coupled with a
fold-change >1.5 in relative mRNA expression, was used to identify 7683 out of a total of
41 897 array probes consisting of 3724 unique Entrez Gene IDs; that is, in this case, 3724 dif-
ferentially expressed genes. A cluster analysis using k-means was performed on the 7683
differentially expressed array probes. The number of initial clusters chosen was 28 as this
was the lowest number of clusters to allow a minimal correlation coefficient of 0.6 for any gene
expression profile in its respective cluster. Individual gene expression patterns are allowed to
cluster with genes having the same expression pattern, providing information on the various
patterns that exist in the kidney and howmany genes exhibit those patterns of expression during
the life cycle. We arbitrarily choose six example clusters out of 28 clusters to demonstrate the
expression patterns in Figure 22.1. By mere eye observation, we may find that the patterns of
the six clusters are very different. Genes, which had high expression in the early period (first
2 weeks), appeared only in cluster 2 whereas genes in the other five clusters showed low expres-
sion at first 2 weeks. Furthermore, these five clusters with early low expression had also very
different patterns with each other: cluster 1 had a peak at week 8; cluster 5 had a peak at week
21; cluster 4 had double peaks; cluster 3 gradually increased during the time of the study; clus-
ter 6 sharply increased after week 2 and reached a peak at week 5.
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Figure 22.1 k-Means cluster analysis of differentially expressed genes (Kwekel et al., 2013). These data
illustrate the various biological patterns of kidney expression which exist during pre-pubertal, early adult
and aged rat life stages. Differentially expressed genes were clustered into 28 k-means clusters as this is the
lowest number of clusters which allows a minimum correlation coefficient of R = 0.6 between any one
expression profile and its other cluster members. Only 6 out of 28 clusters are presented here. The x- and
y-axes represent age in weeks and relative fold-change, respectively
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22.2.2 Bar Chart

A bar chart or bar graph is a chart with rectangular bars with lengths proportional to the values
that they represent. It uses either horizontal or vertical bars to show comparisons among cate-
gories. A vertical bar chart is sometimes called a column bar chart. One axis of the chart shows
the specific categories being compared, and the other axis represents a discrete value. Some bar
charts present bars clustered in groups of more than one (grouped bar charts), and others show
the bars divided into subparts to show cumulative effect (stacked bar charts). Some bar charts
can also be drawn in a 3D fashion, not only for fancy appearance, but also for showing the
comparison of the combination of two characteristics.
Sîrbu and colleagues conducted a study to investigate the state of the art for the three tech-

nologies, namely RNA-seq, single-channel (SC) and dual-channel (DC) microarrays, with a
view of assessing overlapping features, data compatibility and integration potential, in the
context of gene expression time series datasets for theDrosophila melanogaster embryo devel-
opment (Sîrbu et al., 2012). Differential expression analysis was performed using R software;
that is, the LIMMA package, for the two microarray datasets, and the DESeq package for the
sequencing dataset. As one of the results presented in their study, a bar chart as depicted in
Figure 22.2 was employed to show the proportion of those genes identified from each dataset,
together with the different differentially expressed sets that apply at different levels. Figure 22.2
shows an example of grouped bar charts.
To understand how complex and highly connected metabolic networks are organised,

Matthäus and colleagues measured the biosynthetic potential of a particular compound by deter-
mining all metabolites that can be produced from it and called this set the scope of the compound
(Matthäus, Salazar and Ebenhöh, 2008). A hierarchical clustering method was applied to iden-
tify groups of compounds with similar chemical structures and appear in the same metabolic
pathway. In order to measure the quality of the clustering to assure that the elements with
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Figure 22.2 Percentage of reference genes represented in the differentially expressed sets obtained from
the three datasets (Sîrbu et al., 2012). The NGS dataset identifies the largest number of reference genes,
and the DC dataset the lowest
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the same cluster are similar and the clusters are well distinguishable, twometrics, namely cluster
radius and cluster separation, were calculated for every cluster. Cluster radius, dmax0 is defined as
the maximum of the distances between all data points contained in the cluster to the centroid.
Cluster separation, dmin1 , is defined as the minimum of the distances between all data points in
the cluster to the centroid of its nearest neighbouring cluster. The stacked bar chart as depicted
in Figure 22.3 was used to show the cluster radius and cluster separation for all clusters. Thus,
the difference between the cluster radius and cluster separation can be easily spotted and a
judgement as to which cluster is better can be made simply by eye observation.
Chen and colleagues attempted to develop an effective analysis method to estimate expres-

sion-pattern similarities between different tumour tissues and their corresponding normal tis-
sues (Chen et al., 2013). A cluster analysis was conducted to characterise the gene expression
pattern in gene expression level and variation. The study found that cancer-associated
housekeeping genes are expressed at higher and more variable levels in cancerous conditions
than in normal conditions. As shown in Figure 22.4, 3D bar charts were used to indicate the
numbers of housekeeping genes in both normal and cancer tissues, and furthermore, the
adjustment of the numbers of housekeeping genes when the condition changed from normal
to cancerous.

22.2.3 Error Bar

Error bars commonly appear in presentations in all kinds of publications. They are able to show
confidence intervals, standard errors, standard deviations or other related quantities. Error bars
are valuable for understanding results in a research article and deciding whether the authors’
conclusions are justified by the data. Since different types of error bars give quite different infor-
mation, Cumming and colleagues suggested several simple rules to assist with effective use and
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Figure 22.3 Cluster radius and cluster separation (Matthäus, Salazar and Ebenhöh, 2008). Maximum
distance between compounds of a cluster to their corresponding consensus scope dmax0 (cluster radius),
and the minimum distance of the compounds to the second nearest consensus scope dmin1 (cluster
separation). The assignment to a cluster is good if dmax0 dmin1
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interpretation of error bars (Cumming, Fidler and Vaux, 2007). Although their suggestions
were supposed to be given to experimental biologists, some of them are useful specifically
for bioinformaticians to visualise the results of cluster analysis. For example, when showing
error bars, always describe in the figure legends what they are; the value of the sample size, or
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Figure 22.4 (a) Shared HK gene expression variation distribution in normal and cancer conditions.
(b) Gene expression variation adjustment in shared HK genes between normal and cancer conditions
(Sîrbu et al., 2012). There are three gene expression variation statuses: Constant, abbreviated as suffix
‘C’ in (b); Moderate variable, abbreviated as Moderate in (a) and suffix ‘M’ in (b); and Variable,
abbreviated as suffix ‘V’ in (b)
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the number of independently performed experiments, must be stated in the figure legend; error
bars and statistics should only be shown for independently repeated experiments, and never
for replicates.
As shown in Figure 22.5, error bars were used by Kwekel and colleagues (2013) to show

the expression profiles of three qualified kidney biomarkers, namely Kim-1, Tff3 and Clu, over
the life cycle of the rat.
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Figure 22.5 Differential life cycle expression of genes encoding qualified kidney biomarkers
(Matthäus, Salazar and Ebenhöh, 2008). Genes encoding qualified renal biomarkers kidney injury
molecule 1 (Kim-1), clusterin (Clu) and trefoil factor 3 (Tff3) show life cycle expression. Their
microarray data and qRTPCR relative fold-changes are plotted, respectively, using error bars, which
represent standard error of mean
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22.2.4 Pie Chart

A pie chart is a circular chart divided into sectors, illustrating numerical proportion. In a pie
chart, the arc length of each sector (and consequently its central angle and area), is proportional
to the quantity it represents. While it is named for its resemblance to a pie which has been sliced,
there are variations on the way it can be presented. Pie charts are very widely used in all types of
research articles. However, they have been criticised, and many experts recommend avoiding
them, pointing out that research has shown it is difficult to compare different sections of a given
pie chart, or to compare data across different pie charts. Pie charts can be replaced in most cases
by other plots such as the bar chart.
Richards and colleagues assessed genome-wide gene expression patterns in two natural acces-

sions of the model plant Arabidopsis thaliana (Thale Cress), namely Bay-0 and Sha, and exam-
ined the nature of transcriptional variation throughout its life cycle and gene expression
correlations with natural environmental fluctuations (Richards et al., 2012). In their study, a
pie chart, as depicted in Figure 22.6, was used to show the unexpressed genes in both Bay-0
and Sha accessions. It was clear that the majority in both accessions were unannotated genes.

22.2.5 Box Plot

A box plot is a convenient way of graphically depicting groups of numerical data through their
quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indi-
cating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot
and box-and-whisker diagram. Outliers may be plotted as individual points. Box plots display
differences between populations without making any assumptions of the underlying statistical
distribution: they are non-parametric. The spacing between the different parts of the box helps
to indicate the degree of dispersion (spread) and skewness in the data, and identify outliers. As
an example depicted in Figure 22.7, the box plot was used to show that normal-unique house-
keeping genes and cancer-associated housekeeping genes prefer to express more variable

Sha unexpressed genesBay unexpressed genes

Intracellular signaling cascad
Cell wall modification
Defense response
Regulation of transcription

Unannotated

Regulation of pH
Plant-type cell wall organisation
Hydrogen peroxide catabolic process
RNA-dependent DNA replication
Metabolic process
tRNA 3ʹ-terminal CCA addition
Recognition of pollen
Apoptosis

4415 unannotated4626 unannotated

Figure 22.6 By far the majority in both accessions were unannotated genes (Richards et al., 2012). Gene
Ontology (GO) categories for genes that were considered ‘absent’ in all three replicates of at least one
sample. Approximately 1/3 of the genome of both Bay-0 (8322 genes) and Sha (7948) was not
detected in this study (See insert for color representation of the figure)
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expressed genes in 3 expression variation statuses, namely constant, moderate, and variable,
compared AA with normal (the standard control) and cancer housekeeping genes, because they
undertake the basic function of reacting to physiological conditions (Chen et al., 2013).

22.2.6 Histogram

A histogram is a representation of tabulated frequencies, shown as adjacent rectangles, erected
over discrete intervals (bins), with an area proportional to the frequency of the observations in
the interval. The height of a rectangle is also equal to the frequency density of the interval; that
is, the frequency divided by the width of the interval. The total area of the histogram is equal to
the total number of data observations. A histogram may also be normalised displaying relative
frequencies. It then shows the proportion of cases that fall into each of several categories, with
the total area equalling to one. The categories are usually specified as consecutive, non-
overlapping intervals of a variable. The categories (intervals) must be adjacent, and often
are chosen to be of the same size. The rectangles of a histogram are drawn so that they touch
each other to indicate that the original variable is continuous.
The first example, as depicted in Figure 22.8, is the pair of histograms that Stegmaier and

colleagues used to show the distribution of ED.sqr, which is a measurement of distance invol-
ving Euclidean distance and information coverage, for inter-class, intra-class and intra-family
alignments (Stegmaier et al., 2013). The objective of their study was to analyse the similarities
between DNA sequence motifs in a comprehensive set of vertebrate transcription factor classes.
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Figure 22.7 Six types of housekeeping genes Coefficient of Variation (CV) values distributions (Chen
et al., 2013). The up and down bars signify Q1 (one quarter) and Q3 (three quarters) of CV values, marked
as constant and variable expression threshold values. ‘Normal’ is CV values distribution for normal
housekeeping genes; ‘Normal-unique’ is CV values distribution calculated from specific housekeeping
genes in normal condition; ‘Shared-normal’ is CV values distribution in nine cancer cell lines calculated
from overlapped housekeeping genes in normal and cancer conditions; ‘Shared-cancer’ is CV values
distribution in 12 normal tissues calculated from overlapped housekeeping genes in normal and cancer
conditions; ‘Cancer-associated’ is CV values distribution calculated from specific housekeeping genes in
cancer condition; ‘Cancer’ is CV values distribution for cancer housekeeping genes
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We can find that distributions of intra- and inter-class scores strongly overlapped and the intra-
family distribution exhibited a smaller overlap with and a different mode than the inter-class
distribution.
Caretta-Cartozo and colleagues introduced a network in which the weight of each link is a

function of the phase difference between the expression peaks of two genes (Caretta-Cartozo
et al., 2007). The analysis of the stability of clustering through the computation of an entropy
parameter reveals a structure made of four clusters, which are separated by bottleneck structures
that appear to correspond to cell-cycle checkpoints. Another example of a histogram, as
depicted in Figure 22.9, is the pair that Caretta-Cartozo and colleagues showed, illustrating
the phase distributions and phase-difference distributions for periodic genes from the three
independent studies on Schizosaccharomyces pombe and from the study on Saccharomyces
cerevisiae (Figure 22.9).

22.2.7 Scatter Plot

A scatter plot is a type of mathematical diagram using Cartesian coordinates to display values
for two variables for a set of data. The data are displayed as a collection of points, each having
the value of one variable determining the position on the horizontal axis and the value of the
other variable determining the position on the vertical axis. The scatter plot can suggest various
kinds of correlations between variables with a certain confidence interval. For example, weight
and height, weight would be on the x-axis and height would be on the y-axis. Correlations may
be positive (rising), negative (falling) or null (uncorrelated). If the pattern of dots slopes from
lower left to upper right, it suggests a positive correlation between the variables being studied.
If the pattern of dots slopes from upper left to lower right, it suggests a negative correlation. One
of the most powerful aspects of a scatter plot, however, is its ability to show nonlinear relation-
ships between variables. Furthermore, if the data are represented by a mixture model of simple
relationships, these relationships will be visually evident as superimposed patterns.
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Figure 22.8 ED.sqr scores for inter-class, intra-class and intra-family alignments (Stegmaier et al.,
2013). (a) Histograms of adjusted ED.sqr scores for inter-class (light) and intra-class alignments
(dark). (b) Histograms of adjusted ED.sqr scores for inter-class (light) and intra-family alignments (dark)
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A typical example of a scatter plot (Figure 22.10) comes from Chen and colleagues, who
presented the scatter MDAD plot of cancer-associated housekeeping genes, where MD stands
for M distance and AD stands for A distance (Chen et al., 2013).

22.2.8 Venn Diagram

A Venn diagram, named after John Venn around 1880, also known as a set diagram, is a dia-
gram that shows all possible logical relations between a finite collection of sets. A Venn dia-
gram is constructed with a collection of simple closed and overlapping curves drawn in a
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Figure 22.9 Phase distributions (Left) and phase difference distributions (Right) for periodic genes from
the three independent studies on S. pombe and from the study on S. cerevisiae (Caretta-Cartozo et al., 2007)
(See insert for color representation of the figure)
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plane. The interior of the circle symbolically represents the elements of the set, while the exte-
rior represents elements that are not members of the set. For instance, in a two-set Venn dia-
gram, one circle may represent the group of all wooden objects, while another circle may
represent the set of all tables. The overlapping area or intersection would then represent the
set of all wooden tables. Shapes other than circles can be employed as shown below by Venn’s
own higher set diagrams. Venn diagrams typically represent two or three sets, but there are
forms that allow for higher numbers.
Sîrbu and colleagues employed the Venn diagram, as depicted in Figure 22.11a, to show the

number of differentially expressed genes in each dataset, and in overlapping areas (Sîrbu et al.,
2012). The Next/Second Generation Sequencing (NGS) dataset identified the largest number of
genes, in agreement with previous study findings, followed by SC and DC. Datasets SC and
NGS show greatest similarity for the differentially expressed sets obtained, with a large number
of (mostly common) differentially expressed genes involved.
Yao and colleagues introduced an algorithm named Survival analysis using Cox proportional

hazard regression and Random resampling (SCoR) to apply random resampling and clustering
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Figure 22.10 MDAD plots of cancer-associated housekeeping genes (Chen et al., 2013). MD < 0means
the gene expression spanwidth in cancer condition is larger than that in normal condition, and AD< 0means
the gene expression relative average level in cancer condition is higher than that in normal condition.
According to cancer-associated housekeeping gene expression variation statuses, cancer-associated
housekeeping genes are divided into three subtypes, namely constant, moderate variable and variable
expressed cancer-associated housekeeping genes. Paired Wilcoxon signed-rank test is used here to
measure gene expression regulation and gene expression variation status regulation in cancer. (a) All
cancer-associated housekeeping genes. (b) Cancer-associated constant expressed housekeeping genes.
(c) Cancer-associated moderate variable expressed housekeeping genes. (d) Cancer-associated variable
expressed housekeeping genes
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methods in identifying gene features correlated with time-to-event data (Yao et al., 2012). As
shown in Figure 22.11b, overlapping genes found by SCoR in three breast cancer datasets were
presented in the Venn diagram neatly.

22.2.9 Tree View

Tree view, also known as a dendrogram, is a tree diagram frequently used to illustrate the
arrangement of the clusters produced by hierarchical clustering. Dendrograms are often used
in computational biology to illustrate the clustering of genes or samples. The bottom level of
nodes represent data (individual observations), and the connected nodes represent the clusters
to which the data belong, with the lines representing the distance (dissimilarity). The distance
between merged clusters monotonically increases with the level of the merger: the height of
each node in the plot is proportional to the value of the intergroup dissimilarity between its
two daughters (the top nodes representing individual observations are all plotted at zero height).
To visualise the clustering hierarchical clustering results of gene expression data, tree views
are often accompanied by a heat map (discussed in the following subsection).
An example shown in Figure 22.12 is the cluster dendrogram and heat map of gene expres-

sion using SCoR-generated prognostic probes from NKI-295 dataset in Yao and colleagues’
study (Yao et al., 2012). It is worth noting that in this example both dendrogram and heat
map were used to illustrate the clustering results. On the left-hand side of Figure 22.12, the
tree structures are shown for both rows (genes) and columns (samples or patients). In Stegmaier
and colleagues’ study of DNA sequence motif similarity, as depicted in Figure 22.13, the den-
drogram showed the clustering result for the set of 71 non-zinc finger Jaspar motifs (Stegmaier
et al., 2013).
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Figure 22.11 Venn diagram examples in two different studies (Sîrbu et al., 2012; Yao et al., 2012).
(a) Differentially expressed genes. The NGS and SC datasets display the largest commonality, while
the DC and SC display the smallest (Sîrbu et al., 2012). (b) Overlapping genes found by SCoR in
three breast cancer datasets (Yao et al., 2012)
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Figure 22.12 Cluster heat map of gene expression using SCoR-generated prognostic probes from NKI-295 dataset with
blow-up views of genes inside the centre of poor and good prognosis gene clusters. Probes matching the NKI 70-genes are
marked in black lines on the right side of the heat map (Yao et al., 2012) (See insert for color representation of the figure)
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Figure 22.13 Clustering of 71 non-zinc finger motifs from Jaspar (Stegmaier et al., 2013). Gray boxes
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family threshold. Some clusters were merged below that threshold, because Familial Binding Profiles
(FBPs) formed in the course of the clustering process provided for a better presentation of the motif
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22.2.10 Heat Map

A heat map is a graphical representation of data where the individual values contained in a
matrix are represented as colours. Heat maps originated in 2D displays of the values in a data
matrix. Larger values were represented by small dark gray or black squares (pixels) and smaller
values by lighter squares. There are many different colour schemes that can be used to illustrate
the heat map, with perceptual advantages and disadvantages for each. Rainbow colour maps are
often used, as humans can perceive more shades of colour than they can of gray, and this would
purportedly increase the amount of detail perceivable in the image. Fractal maps and tree maps
both often use a similar system of colour-coding to represent the values taken by a variable in a
hierarchy. Figure 22.12 can be a very good example for the joint use of both heat map and tree
view. A heat map can also be used unaccompanied. As depicted in Figure 22.14, a heat map was
employed to show differential expression during flowering (Richards et al., 2012). The heat
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Figure 22.14 Heat map for Bay-0 genes that show differential expression during flowering (Richards
et al., 2012). The numbers listed to the left indicate the cluster number identified in the silhouette analyses.
The four most significant (i.e., lowest p values) GO term categories enriched for each cluster are shown on
the left. The vegetative and flowering samples are indicated at the top, and the rows corresponding to
various flower-development genes are shown. Several developmental genes associated with bolting
and flower development are highlighted. Scale: from brightest blue equals most down-regulated to
brightest red equals most up-regulated
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map presents groups of unique gene expression patterns (defined by cluster analysis) for which
more than 50% of the variance was explained by flowering status in both Bay-0 and Sha.

22.2.11 Network Graph

A network graph is a representation of a set of objects where some pairs of objects are con-
nected by links. The interconnected objects are represented by mathematical abstractions called
vertices, and the links that connect some pairs of vertices are called edges. Typically, a network
graph is depicted in diagrammatic form as a set of dots for the vertices, joined by lines or curves
for the edges. Graphs are one of the subjects studied in discrete mathematics, but here we only
consider them as a visualisation method to present networks. We have discussed many visua-
lisation tools for graphs in Chapter 16.
Freeman and colleagues presented an approach for visualisation and analysis of transcriptional

networks generated from microarray data (Freeman et al., 2007). These networks consisted of
nodes representing transcripts connected by virtue of their expression-profile similarity across
multiple conditions. The resulting graphs, as depicted in Figure 22.15a and b, are weighted undi-
rected graphs consisting of probes connected by their co-expression values, when the Pearson
threshold is 0.95 and 0.9, respectively. Visual representation of such data is especially desirable,
as it is far easier for people to infer relationships and identify structural features from a visual
standpoint. Figure 22.15a hides the nodes so as to show the structure of the networks, while
Figure 22.15b shows coloured nodes according to their membership of Morkov cluster (MCL)
clusters.

(a) (b)

Figure 22.15 Untiled (Organic Layout) of GNF1M Network Graphs at Different Pearson Correlation
(Freeman et al., 2007) Thresholds Graphs show the mouse tissue transcription network graphs when
the Pearson threshold is set at (a) 0.95 (2860 nodes, 201 724 edges); nodes have been hidden so as to
show the structure of the networks, and (b) 0.90 (5410 nodes, 447 467 edges), nodes are shown and
coloured according to their membership of MCL clusters (inflation value 1.5) (See insert for color
representation of the figure)
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22.2.12 Low-dimension Display

Low-dimension display is not an actual method of visualisation, but an idea of visualising high-
dimensional data in a diagram. There are two most popular ways to do that: the first is principal
component analysis (PCA) and the second is multidimensional scaling (MDS). We have
discussed PCA in Chapter 8. The difference between PCA and MDS is that PCA uses two
or three predominant principal components to represent all features, while MDS displays
the information contained in a distance matrix and it does not matter how many features there
are in the data.
Kwekel and colleagues employed PCA in their study on renal gene expression (Kwekel

et al., 2013). The 7683 differentially expressed probes that met the filtering criteria were used
for principal component analysis. The top three principal components account for 41.3%,
23.7%, and 7.2% of the total variability in the dataset, respectively, and are plotted in three
dimensions to visualise the contribution of individual animals to the global expression profiles
of the differentially expressed genes. The 3D visualisation is shown in Figure 22.16. The
2-week-old group shows the greatest distance from the other ages, followed by more proximal
clustering of the 5-, 6-, 8-, 15- and 21-week-old groups, with 78- and 104-week-old groups
occupying a third sub-cluster. These three broad age-divisions seem to define major stages
in kidney gene expression during the life cycle.

22.2.13 Receiver Operating Characteristics Curves

A receiver operating characteristic (ROC) curve has been widely used to illustrate the perfor-
mance of a binary classifier system while its discrimination threshold is varying. The graphical
plot presents the fraction of true positives out of the total actual positives versus the fraction of
false positives out of the total actual negatives at various threshold settings. True positive rate is
also known as sensitivity or recall in machine learning. The false positive rate is also known as
the fall-out and can be calculated as one minus the more well-known specificity. The ROC
curve is then the sensitivity as a function of fall-out. Generally, the ROC curve plots the cumu-
lative distribution function of the detection probability in the y-axis versus the cumulative
distribution function of the false alarm probability in x-axis if both of the probability distribu-
tions for detection and false alarm are known. ROC analysis enables us to select possibly
optimal models and to discard suboptimal ones independently from the cost context or the class
distribution. Furthermore, ROC analysis directly and naturally leads to benefit versus cost
analysis of diagnostic decision making.
Habib and colleagues presented a method for comparing and merging motifs, based on

Bayesian probabilistic principles (Habib et al., 2008). This method, which is called Bayesian
likelihood 2-component (BLiC), took into account both the similarity in positional nucleotide
distributions of the two motifs and their dissimilarity to the background distribution. In this
study, the sensitivity and specificity of motif similarity-scoring methods were evaluated by
comparing all possible pairs of motifs from the datasets, and testing whether pairs that have
high similarity indeed were generated from the same source. In the ‘Yeast’ dataset a pair is
considered as true if the two motifs were generated from binding locations of the same tran-
scription factor, and in the ‘Structural’ dataset a pair is considered as true if the motifs are
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of factors from the same structural class. As shown in Figure 22.17, examples of ROC curves
indicate that the BLiC score outperformed all other scores throughout the range of possible
sensitivity/specificity tradeoffs on both datasets.

22.2.14 Kaplan–Meier Plot

AKaplan–Meier plot is a plot of the Kaplan–Meier estimate of the survival function, which is a
series of horizontal steps of declining magnitude which, when a large enough sample is taken,
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Figure 22.16 Three-dimensional principal component analysis of differentially expressed genes
(Kwekel et al., 2013). The 7683 differentially expressed features (ANOVA, p <0.01; relative fold-
change >1.5) were used to assess the global view of each animal’s contribution to the life cycle
expression profile. Each sphere represents the composite expression profile of one animal according to
the top three principal components plotted in three-dimensional space (ArrayTrack). Spheres are
coloured by similar age group (N = 4 or 5) and generally cluster together according to respective age
in an age-sequential pattern. Two-week animals show the most distinction from other groups,
followed by the 78- and 104-week animals’ separation from the remaining 5-, 6-, 8-, 15- and 21-week
groups. Together, these data illustrate the relatively high reproducibility between biological replicates
in a discrete and continuous linear pattern from young to old animals. It also suggests at least three
general stages in kidney life cycle gene expression (See insert for color representation of the figure)
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approaches the true survival function for that population. The Kaplan–Meier estimator, also
known as the product limit estimator, is an estimator for estimating the survival function from
lifetime data. In medical research, it is often used to measure the fraction of patients living for a
certain amount of time after treatment. The estimator is named after Edward L. Kaplan and Paul
Meier. The value of the survival function between successive distinct sampled observations is
assumed to be constant. An important advantage of the Kaplan–Meier curve is that the method
can take into account some types of censored data, particularly right-censoring, which occurs if
a patient withdraws from a study; that is, is lost from the sample before the final outcome is
observed. On the plot, small vertical tick-marks indicate losses, where a patient’s survival time
has been right-censored. When no truncation or censoring occurs, the Kaplan–Meier curve is
the complement of the empirical distribution function. In medical statistics, a typical applica-
tion might involve grouping patients into categories; for instance, those with Gene A profile
and those with Gene B profile. In the graph, patients with Gene B die much more quickly than
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Figure 22.17 Examples of ROC from (Habib et al., 2008). Left: Sensitivity and specificity of different
scoring methods: Comparison of different scoring methods on the ‘Yeast’ dataset using a subset of motifs
generated from subsets of size 35 with altered lengths (not including the full-length motifs, 685 motifs).
Each similarity score was assigned an empirical statistical significance p-value. The ROC curve plots the
true positive rate vs. the false positive rate, as computed for different p-value thresholds, where pairs of
motifs generated from genomic binding sites that were associated with the same factor are considered true
positives. The BLiC score (green, using a Dirichlet prior, or blue, using a Dirichlet-mixture prior, and blue
line is overlapped with green one) outperformed all other similarity scores: Jensen–Shannon (JS)
divergence (red), Euclidean distance (purple) and Pearson Correlation coefficient (cyan). Right:
Sensitivity and specificity estimated by structural data: Same as the left one but using the ‘Structural’
dataset. Pairs of motifs from the same structural family are considered true positives (See insert
for color representation of the figure)
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those with Gene A. After 2 years, about 80% of the Gene A patients survive, but less than half
of patients with Gene B.
As shown in Figure 22.18, one may easily read that the effect of patient gender on survival

could only be established in stage T1 tumours (size < 3 cm), and there is no statistically sig-
nificant difference in survival between male and female patients when tumour sizes exceeded
3 cm in stages T2, T3, T4 tumours even within the DCC2008-MI dataset (Yao et al., 2012).

22.2.15 Block Diagram

A block diagram is usually used to describe a system in which the principal parts or functions
are represented by blocks connected by lines that show the relationships among the blocks. It
is typically used for a higher-level, less detailed description aimed more at understanding the
overall concepts and less at understanding the details of implementation. There is an increas-
ing use of engineering principles in biology (as well as biological principles in biology);
therefore, the block diagram technique harnessed by control engineering has been used in
so-called systems biology.
As shown in Figure 22.19, the hierarchical ordering of the consensus compounds is dis-

played in a block diagram in Matthäus, Salazar and Ebenhöh study (2008). The boxes contain
a cluster representative (a compound with a scope identical to the consensus scope), the cluster
label and the consensus scope size, as well as the chemical elements present in most metabolites
of the corresponding cluster. In the block diagram, clusters with a large biosynthetic potential
are positioned above clusters with a lower biosynthetic potential. A line between two clusters is
drawn if the consensus scope of the cluster positioned below is a subset of the consensus scope
of the cluster positioned above.
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Figure 22.18 Identification of sex as a prognostic factor in one lung adenocarcinoma dataset (Yao et al.,
2012). Kaplan–Meier plot of patient survivals stratified by patient gender in all patients, (left) in stage
T1 patients, and (right) stage T2, T3, T4 patients
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22.3 Summary

We introduced 15 methods of visualisation excluding the simple line plot. The examples of these
descriptive presentations can be easily found from any study in the bioinformatics field. The rule
of thumb of choosing the methods of visualisation is to present the results (ideas, discoveries or
experimental observations) in the clearest and simplest way. It is also worth noting that to analyse
the same problem from different perspectives, we need to employ many different approaches
to present the results in a single study. As we may notice in Table 22.1, all applications we
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mentioned in this chapter usedmore than one method to present their studies. Each study, at least,
used three approaches, and some studies even used eight different methods to visualise their
results. All in all, the ultimate goal of our research is to convince people from both inside and
outside the field about our research products, hoping that our results may have a strong impact,
specifically, on biological, medical and clinical research. Therefore, choosing appropriate
approaches to visualise and present the research outcomes is an important part in the art of
research communications.
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23
Splitting-Merging Awareness
Tactics (SMART)

23.1 Introduction

Clustering is one of the most difficult and challenging problems in the realm of machine learn-
ing due to the lack of universal and rigorous mathematical definition. There have been many
families of clustering algorithms used in biological data analysis, including partitional cluster-
ing, hierarchical clustering, model-based clustering, fuzzy clustering and so on, as we have
detailed in Part Three of this book. Results of most of the successful clustering algorithms
strongly depend on the determined number of clusters, for example k-means, model-based clus-
tering and hierarchical clustering (when the clustering memberships need to be determined).
However, in many cases, a priori knowledge of the actual number of clusters is not available.
Thus, the number of clusters has to be estimated beforehand. The problem of determining
the best number of clusters needs to be addressed in another branch of research in clustering
analysis, known as clustering validation, which we have also discussed in Chapter 19.
Once an appropriate clustering-validity index is selected, the general practice for determin-

ing the best number of clusters has few steps: a set of clustering results are first obtained by a
clustering algorithm with a fixed number of clusters within a predetermined range [Kmin, Kmax];
then, these clustering results are evaluated by the chosen validity index; finally, depending on
the chosen validity index, a maximum or minimum index value indicates the best number of
clusters (in some cases if the index value has an increasing or decreasing trend against the num-
ber of clusters, the significant knee point indicates the best number of clusters). However, this
solution requires an extensive search for the number of clusters and is tedious work for a large
number of clusters.
Moreover, the initialisation of clustering is also a major issue. For some algorithms with

deterministic initialisation, for example hierarchical clustering and k-means clustering with
Kaufman approach initialisation (KA), the optimal solution is not always guaranteed. For some
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algorithms sensitive to initialisation, such as k-means with random initialisation, expectation-
maximisation (EM) and self-organisation map (SOM), they may get stuck at a local minimum.
Addressing this problem requires running the algorithm repeatedly with the same dataset using
several different initialisations. This makes such clustering algorithms more computationally
unfavourable. Thus, better options would be integrative frameworks or strategies which pro-
vide an automatic and consistent clustering, so users do not have to worry about setting those
data-specific parameters.
Therefore, automated clustering without employing any a priori knowledge of the number of

clusters is always desired. To implement automated clustering, one has to integrate both clus-
tering algorithm and clustering validation into a framework so that the product of the clustering
fits the data well without a priori knowledge. There have been many algorithms designed for
clustering without specifying the number of clusters; for example, self-splitting competitive
learning (SSCL) (Zhang and Liu, 2002), self-splitting-merging competitive learning (SSMCL)
(Wu et al., 2004), unsupervised learning of finite mixture models (ULFMM) (Figueiredo
and Jain, 2002), variational Bayesian Gaussian model (VBGM) (Teschendorff et al., 2005),
parameter-free clustering (PFClust) (Mavridis, Nath and Mitchell, 2013), density-based spatial
clustering of applications with noise (DBSCAN) (Ester et al., 1996), and so on. However, some
of them still need the upper bound of the number of clusters, for instance SSMCL, ULFMM and
VBGM; some of them require data-dependent parameters, for instance SSCL and DBSCAN;
and some of them have poor clustering performance under noisy conditions, for instance SSCL
and PFClust.
In this chapter, a recent clustering framework, called splitting-merging awareness tactics

(SMART) (Fa and Nandi, 2012, 2013, 2014; Fa et al., 2013; Fa, Roberts, and Nandi,
2014), is introduced. SMART integrates many crucial clustering techniques such as cluster-
splitting methods, cluster-similarity measurement and clustering selection, within a framework
to mimic human perception doing the sorting and grouping. The framework starts with one or
two clusters and accomplishes many clustering tasks to split and merge clusters. While split-
ting, a merging process is also taking place to merge the clusters which meet the merging
criterion. In this process, SMART has the ability to split and merge clusters automatically
in iterations. Once the stop criterion is met, the splitting process terminates and then a cluster-
ing-selection method is employed to choose the best clustering from several generated ones.
Moreover, the SMART framework is not restricted to a specific clustering technique.
The rest of this chapter is organised in the following sequence. The next section introduces

related previous work, including SSCL, SSMCL, ULFMM, VBGM, PFClust and DBSCAN.
Section 23.3 describes the philosophy of the SMART framework. Subsequently, the clustering
techniques employed in the SMART framework are detailed in Section 23.4. An enhanced
SMART (E-SMART) structure is introduced in Section 23.5. Finally, we present some exam-
ples and draw conclusions.

23.2 Related Work

23.2.1 SSCL

SSCL by Zhang and Liu (2002) is one of the neural network-based clustering algorithm
employing a competitive learning (CL) paradigm called one-prototype-take-one-cluster
(OPTOC), which was introduced in Chapter 14. SSCL employs many auxiliary vectors,
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including asymptotic property vector (APV), centre property vector (CPV) and distant property
vector (DPV) in the learning of each prototype. After the first split happens, the prototypes start
to compete for updating when a pattern is presented. Each time a prototype splits into two pro-
totypes, one stays at the same location as the mother prototype, the other is spawned at a distant
location, which is indicated by the DPV of its mother prototype. Then all the prototypes avail-
able will reset their winning counters and start to compete according to the nearest-neighbour
condition. It has no dependency on the initial locations of prototypes. Moreover, it may find the
right number of natural clusters via the adaptive splitting processes. However, there are two
vital issues to prevent its practical uses: (1) the prototypes are easily trapped into a global
centroid, especially the first few ones, and (2) the parameters for stopping both OPTOC learn-
ing and splitting are crucial to the algorithm but they are difficult to estimate reliably (Wu
et al., 2004).

23.2.2 SSMCL

Wu et al. proposed an SSMCL algorithm for clustering microarray gene expression data (Wu
et al., 2004), which also employed the OPTOC paradigm. Different from SSCL, SSMCL
employs the OPTOC paradigm to over-cluster the dataset to a large number of partitions,
say kmax, then it merges partitions to fewer clusters, which were closer to the natural clusters.
This strategy is called splitting-then-merging (STM). The merging criterion is that when two
clusters are close to each other to the extent that their joint probability density function from a
unimodal structure, then it would be reasonable to merge these two clusters into one. However,
there are also two critical problems of SSMCL: (1) it requires the upper bound of the number of
clusters, which sometimes could be unreasonably large, say the number of data objects; (2) the
merging criterion is coarse, and sometimes may fail, especially in high-dimensional datasets.

23.2.3 ULFMM

ULFMM, proposed by Figueiredo and Jain (Figueiredo and Jain, 2002), belongs to mixture
model-based clustering. But, strictly speaking, it is an automatic clustering framework rather than
a pure clustering algorithm. Similar to SSMCL, ULFMMemploys the STM strategy, which splits
the dataset into kmax clusters and then merges those clusters close enough to each other until only
one cluster remains. The component-wise expectationmaximisation (CEM), which is a variant of
EM, is used as the learning method. The CEMwill be detailed in Section 23.4.2. The CEM algo-
rithm is essential in this framework in the sense that all components are updated successively and
compete with each other. Strong components survive while weak components die. During the
merging procedure, many clustering results are generated. A model-based clustering validation,
minimummessage length (MML), which was introduced in Chapter 20, is integrated to select the
best clustering as the output in terms of the MML value.

23.2.4 VBGM

Variational Bayesian Gaussian mixture (VBGM) has been discussed in Chapter 15. Teschen-
dorff et al. applied VBGM in the analysis of gene expression data (Teschendorff et al., 2005).
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The interested readers may be referred to Chapter 15, or references (Beal and Ghahramani,
2003; Bishop, 2006) for the technical details. As we mentioned before, Bayesian methods pro-
vide a solution to the over-fitting problem in principle. They may be regarded as estimating the
uncertainty of the model as a whole and the uncertainty in the estimated parameters themselves.
VB is one of the methods which make the evaluation of posterior distribution tractable. VBGM
employs the Variational Bayesian Expectation Maximisation (VBEM) algorithm, which also
requires the upper bound of the number of clusters. Remarkably, VBGM does not use any clus-
tering validation, while it calculates the marginal probability for candidate-clustering results
and selects the one with the largest value.

23.2.5 PFClust

Recently, a parameter-free clustering (PFClust) algorithm was proposed by Mavridis, Nath and
Mitchell (2013). PFClust is able to cluster data and identify a suitable number of clusters
automatically without requiring any parameters to be specified by the user. The algorithm
partitions a dataset into a number of clusters that share some common attributions, such as var-
iance of intra-cluster similarity. The clustering algorithm consists of two parts: the first part is
the randomisation, and the second part incorporates both the threshold selection and the actual
clustering. In the randomisation step, 20 thresholds are estimated by a randomisation process.
These thresholds are used to cluster the data and only the best threshold is selected in the second
step. The whole randomisation and threshold-selection procedure is carried out multiple times.
The threshold values are estimated by multiple random clusterings of the data. A random num-
ber of clusters are chosen and data points are randomly assigned in one of clusters. Therefore,
the intra-cluster mean similarities from every individual cluster across a number of randomisa-
tions are collated into a single distribution. From this distribution, 20 threshold values are
retrieved from 95 to 100% significant levels. Then for each threshold value, the dataset is clus-
tered with a similarity-based clustering. All elements are separated and no cluster is defined.
The two most similar elements are placed together to form the first cluster. This procedure goes
on, like an agglomerative algorithm, until the average similarity of the cluster exceeds the
threshold. This process is continued iteratively until all data points have been clustered, or until
remaining elements cannot form a cluster that has an expectation value of intra-cluster simi-
larity greater than the threshold. The Silhouette width (which was introduced in Chapter 20)
is the main factor used in deciding which threshold produces the best clustering.

23.2.6 DBSCAN

DBSCAN is a density-based clustering algorithm, proposed by Ester et al. (1996). It attempts to
find a number of clusters starting from the estimated density distribution of corresponding data
points. In principle, a data point xi is directly density-reachable from another data point xj if
their distance is not farther away than a given distance ϵ. Data point xi is considered den-
sity-reachable from xj if there is a sequence x1,…, xn of data points with x1 = xi, and
xn = xj, where each data point in this sequence is directly density-reachable from its neighbour
points. DBSCAN is based on the concept of density-reachability. DBSCAN requires two para-
meters, ϵ and the minimum number of points required to form a dense region. It starts with an
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arbitrary starting point and the ϵ-neighbourhood of this point is retrieved. If it contains suffi-
ciently many points, a cluster starts; otherwise, the point is labelled as noise. Once a cluster is
considered as dense enough, all points that are found within the ϵ-neighbourhood are added if
they are also dense. This process continues until the whole dense cluster is completely found.
Then it starts with a new unvisited point for the next cluster, leading to the discovery of the
whole clustering structure. DBSCAN is one of the most common clustering algorithms; how-
ever, it still requires the data-dependent parameter ϵ to control the size of the clusters.

23.3 SMART Framework

First of all, we must emphasise that SMART is a framework rather than a simple clustering
algorithm, within which a number of clustering techniques are organically integrated. Thus,
conceptually, SMART does not fall into any categories or families, which have been introduced
in Part Three of this book. In this section, we focus on an overview of the whole framework, and
describe implementation solutions and specific clustering techniques in the following sections.
As depicted in Figure 23.1, the whole clustering procedure is divided into four tasks. SMART

starts with one or two clusters and the cluster needs to be initialised, which is Task 1. Subse-
quently, the data go through a splitting-while-merging (SWM) process, where splitting and
merging are automatically conducted in iterations. In the splitting step of each iteration, which

K = 2
initialisation

Split one of clusters
into two 

Is merging criterion met?

Merge the two clusters
which meet the criterion

Is stopping criterion met?

Clustering selection Task 4

Task 3

Task 2

Task 1

Output

Yes

No

No

Yes

Figure 23.1 Flow chart of the SMART framework
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is labelled Task 2, SMART splits one of the clusters into two. After a splitting step, the new
clustering is censored by a merging criterion, which is associated with Task 3. If the condition
for merging is satisfied, then onemerges the two clusters, otherwise the merging step is skipped.
SMART then goes through a termination-check, where a stopping criterion is applied. If the
condition for termination is not satisfied, SMART goes to the next iteration and continues
to split; otherwise, SMART finishes the splitting-merging process. The last step is the clustering
selection (Task 4).
Note that these tasks in the SMART flow can be completed using many clustering techniques

in the literature; for example, Task 1 can be done by any initialisation technique, either deter-
ministic or random; Tasks 2 and 3 may be achieved by any splitting algorithm and merging
criterion, respectively, or they may be combined into one algorithm; and Task 4 can be accom-
plished by any of either model order-selection algorithms or validity indices. Different techni-
ques will make the implementation slightly different but the flow does not change. Moreover,
different clustering algorithms bring different features into the framework and so SMART can
be customised for different applications. In the following section, we will describe many
SMART algorithms using different splitting andmerging algorithms; that is, OPTOCCL, finite
mixture model (FMM), and mixture of factor analysors (MFA), which are called SMART-CL
(or SMART I), SMART-FMM (or SMART II) and SMART-MFA, respectively, and they have
similar configurations. In particular, both use MML as their clustering-selection algorithm and
use the same termination criterion in the SWM process, namely the maximum number of
merges, Nmax. The logic behind the termination criterion is that, normally, merging will not
start until clustering is somehow saturated, that is, optimal clustering is nearly reached.
Once Nmax is reached, the splitting and merging will terminate automatically. All existing
self-splitting-merging algorithms employ the STM strategy with different clustering para-
digms; instead our SMART algorithms employ the SWM strategy. For the purposes of direct
comparison with the existing STM algorithms, we propose two specific SMART algorithms.
Nevertheless, it should be noted that, within the proposed SMART framework, many other
algorithms can be derived for different clustering paradigms.

23.4 Implementations

23.4.1 SMART-CL

SMART with CL (Fa and Nandi, 2012) uses the CL method; more specifically, the OPTOC
paradigm, as splitting algorithm. It is also called SMART-I because it is the first implementa-
tion of the SMART framework (Fa, Roberts and Nandi, 2014). In SMART-CL, OPTOC CL is
employed to deal with Task 2. Given each prototype Pk, the key technique is that an online
learning vector, APV Ak, is assigned to guide the learning of this prototype. For simplicity,
Ak represents the APV for prototype Pk, and nAk denotes the learning counter (winning counter)
of Ak. As a necessary condition of the OPTOC mechanism, Ak is required to initialise at a ran-
dom location, which is far from its associated prototype Pk, and nAk is initially zero. Taking the
input pattern xi as a neighbour if it satisfies the condition Pk,xi ≤ Pk,Ak , where , is the
inner product operator. To implement the OPTOC paradigm,Ak is updated online to construct a
dynamic neighbourhood of Pk. The patterns ‘outside’ the dynamic neighbourhood will contrib-
ute less to the learning of Pk as compared with the ‘inside’ patterns.
In addition to the APV, there is another auxiliary vector, called DPV Rk, assisting the cluster,

which contains more than one prototype, to split. Let nAk denote the learning counter for Rk,
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which is initialised to zero. Vector Rk will be updated to a distant location from Pk. The
efficiency of splitting is improved by determining the update schedule of Rk adaptively from
the analysis of the feature space. Contrary to the APV Ak, the DPV Rk always tries to move
away from Pk.
The remarkable differences of SMART-CL from SSCL and SSMCL lie in two strategies.

The first strategy is the SWM where the merging process is carried out while the dataset is
split into many pieces by the OPTOCmethod. Every pair of clusters is measured by calculating
the similarity between them by Cohesion, which was proposed by Lin and Chen (2005). The
cohesion metric is defined as given in Equation (23.1),

chs Ck,Cl = x Ck ,Cl
joint x,Ck,Cl

Ck + Cl
23 1

where Ck is the size of the cluster Ck. The term joint(x, Ck,Cl) defines the similarity of the
two clusters referring to the existence of an object x, which is defined as shown in
Equation (23.2),

joint x,Ck,Cl =min fk x , fl x 23 2

where fk(x) and fl(x) are the probability density functions of the distributions in clustersCk andCl.
The second strategy is that SMART-CL employs MML as the clustering-selection criterion.

MML is one of the minimum encoding-length criteria, which we have discussed in Chapter 20.
Therefore, these techniques are integrated into the SMART framework to complete the whole
clustering task. The pseudo-code of SMART-CL is presented in Table 23.1.

Table 23.1 The pseudo-code for SMART-CL

Task 1: Initialising SMART with K = 1
Randomly select P1 and find the farthest object as A1 and initialise R1 =P1;
terminate = 0;
WHILE !terminate
Task 2:Use the OPTOC paradigm for the learning of prototype, and the splitting of the cluster with largest
variance;

IF the prototype Pk does not converge
Go back to Task 2;
ENDIF
Task 3: Calculate pairwise cohesions for all converged prototypes;
IF The maximum of cohesions is a few times larger than the median of cohesions
Merge the pair of cluster with the maximum cohesion;
Go back to Task 3 to continue merging;
ENDIF
The stage for recoding candidate clustering.
IF The number of merges is greater than or equal to Nm

terminate = 1;
ENDIF
ENDWHILE
Task 4: Calculate the length for every converged clustering; output the clustering with the minimum
length.
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Normally, Task 1 in SMART can be done by any initialisation algorithm, either random or
deterministic, like the KA algorithm (Kaufman and Rousseeuw, 1990). In SMART-CL imple-
mentation, a simple random initialisation is used. The first prototype P1 is randomly selected,
the APV A1 is the farthest object away from P1, and the DPV R1 is initialised as P1. Thereafter,
the SWM process starts. Learning with the OPTOC paradigm drags the prototype to its
neighbour, which is ‘inside’ the range of APV, and also drags the APV towards the prototype.
Task 2 will not finish until every prototype converges. Since OPTOC is an online learning algo-
rithm, systematic errors may be introduced by the order in which data are fed into the algorithm.
Thus, every time OPTOC starts, the order of input data is randomised.
Once the prototypes converge, Task 3 commences. The pairwise cohesions are calculated to

measure the distance between the prototype clusters. A criterion is set to guide themerging proc-
ess, stating that if the maximum of the cohesions is Tchs-times more than the majority of the
cohesions, it reveals that two prototypes with this maximal cohesion are close enough to merge.
The merging process continues until no further merge occurs. A merging counter records the
number ofmerges. After themerging process finishes, the clustering is recorded as the candidate
to output. If themerging counter exceeds themaximumnumber of mergesNmax, the SWMproc-
ess is terminated automatically; otherwise, it goes to Task 2 and continues splitting. Once the
SWM process finishes, all the candidates are fed into the MML algorithm, which is associated
with Task 4. The final clustering result is the one which minimises the MML value.
Note that there are two parameters Tchs and Nmax that have to be set in SMART, but they are

neutral; that is, Tchs is a relative number rather than an absolute one, and is a data-independent
value; the reason for setting Nmax is that normally merging occurs frequently after the natural
clustering has been reached. The reasonable value for Tchs is 20 and that for Nmax is 5.

23.4.2 SMART-FMM

The key technique in SMART-FMM (Fa and Nandi, 2013; Fa, Roberts and Nandi, 2014) is a
modified component-wise expectation maximisation of mixtures (CEM2) (Celeux et al., 2001;
Figueiredo and Jain, 2002). Since the finite mixture model (FMM) and the EM algorithm are
very well known topics, we will not address their details here and readers may refer to
Chapter 15. The conventional EM algorithm for mixture model has many drawbacks; for
example, it is sensitive to initialisation and it is a locally greedy method that may be trapped
into local minima. Therefore, the CEM2 was proposed by Celeux et al. (2001) and modified by
Figueiredo and Jain (2002). The greatest advantage of modified CEM2 is that the weaker com-
ponent may naturally be excluded in the iterative process, which gives the stronger ones a better
chance of survival. From the merging point of view, it is a merging process combined with
learning.
Unlike the conventional EM algorithm, CEM2 updates the model parameters θk k =

1,…,K and the probabilities of components αk k = 1,…,K sequentially, rather than simul-
taneously. In CEM2, the estimation is also a two-step process, but in each iteration only one
component has the opportunity to update its parameters. For the j-component, it alternates
the steps:

• CEM2 E-step: Compute the conditional expectation Γ = γk, i k = 1,…,K; i = 1,…,N of the
missing labels Z for i = 1,…,N and k = 1,…,K, such that Equation (23.3) holds,
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γk, i≡E zk, i X,θ =
αkp xi θk
K

l = 1
αlp xi θl

23 3

• CEM2 M-step: Set

α∗j =

N

i = 1
γj, i

K

l = 1

N

i= 1
γl, i

23 4

θ
∗
j = argmax

θj

log p X θ 23 5

For l j, α∗l = αl and θl
∗
= θl.

In Figueiredo and Jain (2002), the adoption of a Dirichlet-type prior for αk results a new
M-step [Equation (23.6)].

α∗k =
max 0,

N

i= 1
γj, i−

Np

2
K

l= 1
0,

N

i= 1
γl, i−

Np

2

, k = 1,…,K 23 6

The corresponding components θ
∗
k with α∗k = 0 are eliminated and become irrelevant. This

component annihilation can be also explained in an estimation theoretic point of view as that
the estimates are not accurate unless enough samples are involved. Those estimates without
enough samples are dismissed and in turn others have more chances to survive. Modified
CEM2 can fulfil learning and merging, which are associated with Tasks 2 (only learning part)
and 3, respectively, in SMART-FMM.
Compared with SMART-CL, SMART-FMM is easier to implement since modified CEM2

can do both learning and merging. In addition to the learning and merging techniques, there are
two configurations different from SMART-CL. The first is that in SMART-FMM, we initially
start with K = 2 because K = 1 does not need learning, but K = 1 is still included in the candidate
list for selection in the output. The second is that the splitting process cannot be done by mod-
ified CEM2 and has to be specified. Once all components converge and all zero-probability
components are discounted, a new component will be injected into the framework. This
new component is initialised deterministically by using the farthest object away from the
closest component among all the components as the mean and averaged covariance matrix
of all components’ covariance matrices, as given by Equations (23.7) and (23.8),

μK + 1 = argmax
x X

min
1 ≤ k ≤K

D x,μk 23 7

ΨK + 1 =
1
K

K

k = 1

Ψ k 23 8

whereD , is a distance metric, and then the clustering splits K = (K + 1). The pseudo-code for
SMART-FMM is given in Table 23.2. The stage for recoding the candidate clustering is after
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all the current components have converged and all merges finish and before the splitting for a
new component starts.

23.4.3 SMART-MFA

To meet the demand of clustering high-dimensional data efficiently, a component-wise expecta-
tion conditional maximisation (CW-ECM) algorithm was proposed and integrated within the
SWM framework, for the mixture of factor analysers (MFA) model (Fa and Nandi, 2014).
TheMFAmodel has been discussed in Chapter 15. The SMART-MFA algorithm has two advan-
tages over conditional MFA algorithms: it has ability to converge to the actual or close-to-actual
number of clusters by an SWMstrategy, and it avoids the localminima effectively and efficiently.
Furthermore, the splitting strategy in the original SMART framework was improved and it may
save more computational effort.
To estimate the latent label indicators Z conditional on the parameters Θ = Θk k =

1,…,K = μk
K
k = 1,Bk

K
k = 1,Ψ k

K
k = 1,πk

K
k = 1 , the CW-ECM updates each component in parallel

with a two-stage process; that is, E and CM steps. Suppose that in t-th iteration, for the kth

component, it has parameters Θ t,k
= Θ t,k

1 ,…,Θ t,k
k−1 ,Θ

t−1,k
k ,…,Θ t−1,k

K and alternates

the steps as follows:

• CW-ECM E-step: Compute Equation (23.9) for n = 1,…,N

γk,n≡E zk,n X,Θ
t,k

=
f xn Θ

t,k
k

G

l = 1
f xi Θ

t,k
l

23 9

Table 23.2 The pseudo-code for SMART-FMM

Task 1: Initialising SMART with K = 2

Randomly initialise θk and αk for k = 1,2;
terminate = 0;
WHILE !terminate
Tasks 2 and 3: Use modified CEM2 for the learning and merging based on Equations (23.3) and (23.6).

IF the prototype θk does not converge
Go back to Tasks 2 and 3;
ENDIF
The stage for recoding candidate clustering.
Splitting: Calculate the parameters for new components (23.7) and (23.8);
IF The number of merges is greater than or equal to Nmax

terminate = 1;
ENDIF
ENDWHILE
Task 4: Calculate the length for every converged clustering; output the clustering with the minimum
length.
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where Equation (23.10) holds.

Θ t,k
l =

Θ t,k
l if l < k

Θ t−1,k
l if l ≥ k

23 10

Thus, we may obtain Equation (23.11).

f xn Θ
t,k
l =

πtl p xn μ
t,k
l , B t,k

l ,Ψ t,k
l if l < k

πt−1l p xn μ
t−1,k
l , B t−1,k

l ,Ψ t−1,k
l if l ≥ k

23 11

• CW-ECM M-step: Set

Equation (23.12) applies.

Θ t,k
k = arg max

Θ t−1,k
k

log p X Θ t,k
23 12

More precisely, Equation (23.12) can be broken down into many individual updates
[Equations (23.13)–(23.15)] as follows:

π t,k
k =

N

n = 1
γk,n

K

l= 1

N

n = 1
γl,n

23 13

μ t,k
k =

N

n= 1
γk,nxn

N

n = 1
γk,n

23 14

B t,k
k = S t,k

k β t,k
k β t,k

k
TS t,k

k β t,k
k +ω t,k

k

−1
23 15

where Equations (23.16)–(23.18) hold.

S t,k
k =

N

n= 1
γk,n xn−μ

t,k
k xn−μ

t,k
k

T

N

n= 1
γk,n

23 16

β t,k
k = B t−1,k

k B t−1,k
k

T +Ψ t−1,k
k B t−1,k

k 23 17

ω t,k
k = Iq−β

t,k T

k B t−1,k
k 23 18

Then the updated estimate Ψ t,k
k is given by Equation (23.19).

Ψ t,k
k = diag S t,k

k −S t,k
k β t,k

k B t−1,k
k

T 23 19

Note that in all EM algorithms for the MFA models, selecting the number of loading factors
q is arbitrary. In our algorithm, we search a range of q in [1, qmax].
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The splitting strategy in the original SMART framework, which calculates all pairwise
distances in the dataset and performs a KA style (Kaufman and Rousseeuw, 1990) to search
for the next candidate to split, was improved (Fa and Nandi, 2014). Such calculation is huge
when the size of the dataset is merely moderate, say around a thousand data objects. It is worth
noticing that the likelihood of the given object allocated to the g-th cluster, which is f xn Θk ,
has been calculated during the EM algorithm, and it can be used to judge how likely the given
object should be allocated in the cluster. If an object has a very small likelihood in every cluster,
there may be two possibilities: one is that the object is an outlier, and another is that the object
belongs to a cluster which has not been discovered. Even for an outlier, it may be an outlier near
the existing clusters or near the cluster not yet having been discovered. In the CW-type EM
(or ECM) algorithm, an actual cluster may survive from iteration to iteration even where
the initial point is relatively far from its centre; on the other hand, the cluster may vanish if
it is not an actual cluster.
Thus, we design our splitting strategy as outlined in the following few steps:

1. To create a pool to record the splitting candidates which have been selected;

2. To find a data object which has a minimum value of
K

k = 1
f xn Θk among all objects not in

the pool;
3. To assign the data object as the μK + 1 of the new (K + 1)th cluster, and generate BK + 1,

ΨK + 1πK + 1 randomly, record the data object in the pool, and K = K + 1.

To summarise, the pseudo-code of the proposed algorithm SMART-MFA is shown in
Table 23.3.

Table 23.3 The pseudo-code for SMART-MFA

Task 1: Initialising SMART with K = 2
Randomly initialise μk, Bk, Ψ k and πk for k = 1,2;
terminate = 0;
WHILE !terminate
Learning and Merging
WHILE !converge
FOR k = 1 K
Use CW-ECM for the learning and merging based on Equations (23.9) and (23.12)
IF πk 0
Get rid of k-th cluster; K =K−1;
ENDIF
ENDFOR
ENDWHILE (!converge)
Splitting:
Employ the splitting strategy, K =K + 1;
IF The number of merges is greater than or equal to Nmax

terminate = 1;
ENDIF
ENDWHILE (!terminate)
Selecting:
Select the best clustering based on MML criterion.
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23.5 Enhanced SMART

Successive processing is a very popular strategy in the signal processing and communication
engineering fields, where the best example is successive interference cancellation (Fa and de
Lamare, 2011; Li, de Lamare and Fa, 2011; Fa and Zhang, 2013). However, successive pro-
cessing is seldom considered in clustering because of two major issues: (1) most successive
processing algorithms know how many sources there are in the received signal before the pro-
cessing stage, but most clustering algorithms do not know the correct number of clusters; and
(2) the order of successive processing influences the performance of the outcomes greatly, so
the better practice is to subtract the highest signal-to-noise ratio (SNR) from the original signal
at each subtraction stage, but most clustering algorithms in the literature do not have the mech-
anism to order the clusters according to their quality. However, it has been found that the
SMART framework has the ability to overcome these two problems, which motivates employ-
ing successive processing to enhance the performance of SMART further.
An enhanced SMART(E-SMART) framework using successive processing was proposed by

Fa et al. (2013). Instead of selecting the best clustering from the results by using a clustering-
selection criterion, we introduce a successive processing strategy into the framework to subtract
clusters one by one in iterations. In doing so, the silhouette index (Rousseeuw, 1987) is
employed to evaluate the intermediate clusters generated by the SWM process and order the
clusters according to index values from high to low. Then we subtract the best cluster from
the original data and iterate the remaining data back to the SWMprocess to start a new iteration.
The process repeats successively and the clustering terminates automatically once no splitting
happened in the SWM process. Consequently, all clusters can be obtained by iterations.
The flow chart of E-SMART is depicted in Figure 23.2. Let us first focus on the original

SMART framework inside the large dotted block, which is labelled SMART. The whole
clustering procedure is divided into four tasks. SMART starts with two clusters (K = 2),
and the cluster needs to be initialised, which is Task 1. Subsequently, the data go through
an SWM process, where splitting and merging are automatically conducted in iterations. In
the splitting step of each iteration, which is labelled Task 2, SMART splits one of the clusters
into two. After a splitting step, the new clustering is censored by a merging criterion, which is
associated with Task 3. If the condition for merging is satisfied, then merge the two clusters,
otherwise skip the merging step. Then SMART goes through a termination-check, where a
stopping criterion is applied. If the condition for termination is not satisfied, SMART goes
to the next iteration and continues to split; otherwise, SMART finishes the splitting-merging
process. Particularly, if the number of mergings exceeds Nmax, which denotes the maximum
number of merging, the SWM process terminates and the intermediate clustering result is
produced. Up to this point, these functioning blocks, which are coloured in grey, are kept in
the E-SMART framework. The last step of the original SMART framework, which is the
clustering selection according to Task 4 in the small dotted boxes, is removed.
In the new framework, a mechanism, which selects the best cluster from the intermediate

clustering result generated by the SWM process and subtracts it from the remaining dataset X ,
is added. In each subtraction stage, the silhouette index is employed to evaluate the quality of each
cluster and order the clusters based on their index values. Let us suppose thatXk = xk i 1 ≤ i ≤Nk

is the best cluster out of the remaining dataset X . Note that in the first iteration, X =X , and in
the later iterations, X =X −Xk. The remaining dataset X is sent back to the SWM process to
start a new iteration. The clustering and subtracting continues until no splitting occurs in the
remaining dataset. The E-SMART framework was implemented with FMM in Fa et al. (2013).
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23.6 Examples

First of all, a benchmark test dataset, which is a bivariate mixture model, is used to demonstrate
how the SMART algorithms work. Then the SMART algorithms are investigated in some real
gene expression datasets and compared with other state-of-the-art clustering algorithms.
The demonstration dataset is quadrature phase-shift keying (QPSK) data with SNR equal to

15 dB. This dataset can be viewed as a four-component Gaussian mixture. This example may
clearly demonstrate how SMART-CL and SMART-FMM work, as shown in Figures 23.3 and
23.4, respectively. In both Figures 23.3 and 23.4, subfigures from (1) to (8) illustrate the
proposed SWMprocess in the SMART framework, and subfigure (9) shows the final clustering
result. The results show that the first merge of SMART I is after K = 5 shown in Figure 23.3-(5)
and the first merge of SMART II is after K = 5 shown in Figure 23.4-(5). Subsequently, the
merge counter measures the times of merges until the SWM process terminates.
Two real microarray gene expression datasets are studied using SMART. The performance

comparisons are carried out between the SMART algorithms and other state-of-the art
clustering algorithms, namely SSMCL, ULFMM, VBGM, DBSCAN, PFClust, MFA, mixture
of common factor analysers (MCFA) and model-based clustering (MCLUST). The first real
dataset is a subset of a leukaemia dataset (Golub et al., 1999), which consists of 38 bone
marrow samples obtained from acute leukaemia patients at time of diagnosis. There are

K = 2
initialisation

Split one of clusters into two 

Is merging criterion met?

Merge the two clusters
which meet the criterion

Is stopping criterion met?
No

Yes

Yes

No

No

X

Xʹ

Clustering selection

Task 1

Task 2

Task 3

Task 4

SMART

If K = 1

OutputTask 4

Select the best cluster, put
it into result pool and

subtract its member from
the remaining dataset Xʹ

Figure 23.2 Flow chart of the E-SMART framework
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999 genes in the dataset (Monti et al., 2003). The biological truth is that the samples include
three groups: 11 acute myeloid leukaemia (AML) samples, 8 T-lineage acute lymphoblastic
leukaemia (ALL) samples and 19 B-lineage ALL samples (Golub et al., 1999; Monti et al.,
2003). The clustering experiments in this dataset were repeated 1000 times in order to test
the ability of detecting the number of clusters for each method. A correct selection rate
(CSR) of the number of clusters was defined as the ratio between the number of experiments
where the true number of clusters is correctly selected, and the total number of experiments.
Several clustering-validation algorithms were employed to validate the clustering results by
every examined clustering algorithm.
The performance comparison is shown in Table 23.4. SSMCL and VBGM totally fail in this

experiment, where SSMCL always converges to one cluster and VBGM always terminates
at kmax = 30. SMART-CL has significantly better performance than ULFMM and has nearly
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Figure 23.3 Demonstration of SMART-CL clustering in QPSK dataset. Sub-figures (1)–(8)
demonstrate the procedure of SMART-CL (SWM process). It starts with K = 1 (sub-figure (1)), splits
into K 2, K = 3, K = 4 and K = 5 shown in sub-figures (2)–(5) respectively, and then merges some
clusters while splitting as shown in sub-figures (6)–(8). Sub-figure (9) is the final clustering result.
Parameter settings: Tchs = 20 and Nmax = 5

379Splitting-Merging Awareness Tactics (SMART)



1

(1)

K = 2

0

–1

–2 0 2

1

(4)

K = 4

0

–1

–2 0 2

1

(2)

K = 2

0

–1

–2 0 2

1

(3)

K = 3

0

–1

–2 0 2

1

(5)

K = 7

0

–1

–2 0 2

1

(6)

K = 6

0

–1

–2 0 2

1

(7)

K = 8

0

–1

–2 0 2

1

(8)

K = 7

0

–1

–2 0 2

1

(9)

K = 4

0

–1

–2 0 2

Figure 23.4 Demonstration of SMART-FMM clustering in QPSK dataset. Sub-figures (1)–(8)
demonstrate the procedure of SMART-FMM (SWM process). It starts with K = 2 (sub-figure (1)),
splits into K = 2, K = 3, K = 4 and K = 7 shown in sub-figures (2)–(5) respectively, and then merges
some clusters while splitting as shown in sub-figures (6)–(8). Sub-figure (9) is the final clustering
result. Parameter setting: Nmax = 5

Table 23.4 Performance comparison of many metrics, including CSR, K, MML, CH, SI for all
algorithms in leukaemia dataset

Algorithm K (q) CSR (%) MML CH SI

MFA 3(7) — 4.23E + 04 6.42 0.35
MCFA 3(4) — 4.22E + 04 6.48 0.35
SSMCL 1 ± 0 0.00 — — —

ULFMM 3.23 ± 0.54 69.40 3.91E ± 42.07E2 5.96 ± 0.89 0.32 ± 0.06
VBGM 30 ± 0 0.00 4.02E ± 42.27E3 0.78 ± 0.02 0.048 ± 0.013
DBSCAN 1 ± 0 0.00 — — —

MCLUST 2 ± 0 0.00 4.27E ± 40.0 6.73 ± 0.0 0.36 ± 0.0
PFClust 4 ± 0 0.00 4.31E ± 42.91 3.73 ± 4.3E-3 0.21 ± 2.51E-4
SMART-CL 2.99 ± 0.13 99.00 3.89E4 ± 1.62E2 6.49 ± 0.3 0.36 ± 0.02
SMART-FMM 3 ± 0 100 2.9E4 ± 8.37E-3 6.75 ± 5.64E-5 0.36 ± 5.81E-8
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30% greater CSR and better performance in other metrics. In terms of mean and standard
deviation of K, SMART-CL has a mean closer to the true value and significantly smaller
standard deviation than does ULFMM. Both MFA and MCFA have their lowest MML values
with three clusters, but compared with two SMART algorithms, they show poorer performance
in all metrics. SMART-FMM has the superior performance and always provides 100% CSR
and best performance in all other metrics. Particularly, SMART-FMM also has very small
variations in these metrics; that is, it provides consistent results even though it is randomly
initialised. In this experiment, DBSCAN, MCLUST and PFClust perform poorly and do not
provide the correct estimates of the true number of clusters. Furthermore, their other validation
metrics are worse than the SMART-FMM algorithm.
Another real dataset is the yeast cell cycle α-38 dataset provided by Pramila et al. (2006).

It consists of 500 genes with highest periodicity scores and each gene has 25 time samples.
Additionally, their peaking times as percentages of the cell cycle have also been provided
by Pramila et al. (2006). It is widely accepted that there are four phases in the cell cycle;
namely, G1, S, G2 and M phases (Cho et al., 1998; Spellman et al., 1998). But there is no
explicit knowledge about how many clusters should be in this dataset, so we cannot calculate
CSR in this case. We obtain four clusters by using both SMART-CL and SMART-FMM, seven
clusters by using ULFMM, eight clusters using SSMCL, three clusters using MFA with five
factors, and five clusters using MCFA with six factors, as shown in Table 23.5. SMART-FMM
has the superior performance as in other experiments. We note that VBGM fails again in this
experiment as it requires a dimension reduction of the data before clustering. We do not
perform a reduction in data dimensions to obtain a fair comparison.
To discern the effectiveness of the clusterings, we plot the histogram of the peak times of

genes in each cluster for each algorithm, as depicted in Figure 23.5, where the grey bar plot
is the histogram of the 500 genes in the dataset. Figure 23.5(a) and (b) show that four clusters
represent reasonably good clustering since there are only few small overlap regions between
clusters. Figure 23.5(c) and (d) indicate that many clusters crowd and overlap in the region
of 5–30%, especially in Figure 23.5(c), and a clustering representing peaking at 20% superim-
poses on another cluster, which spans over 10–30%. These overlapped clusters have to be one
cluster. Figure 23.5(e) and (f) show that MFA andMCFA also give reasonably good clustering

Table 23.5 Performance comparison of many metrics, including K, MML, CH, SI, but excluding CSR,
for all algorithms in yeast cell cycle α-38 dataset

Algorithm K (q) MML CH SI

MFA 3(5) 1.36E + 04 6.68 0.37
MCFA 5(6) 1.30E + 04 6.49 0.37
SSMCL 8 2.11E + 04 3.82 0.14
ULFMM 7 1.23E + 04 6.03 0.38
VBGM 20 3.97E + 04 1.98 0.17
DBSCAN 1 — — —

MCLUST 3 1.394 6.46 0.38
PFClust 6 1.24E + 04 3.94 0.32
SMART-CL 4 1.26E + 04 6.27 0.37
SMART-FMM 4 1.16E + 04 6.86 0.39
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Figure 23.5 Histogram of the peak times of genes in each cluster for each algorithm in Yeast cell cycle
α-38 dataset. (a) SMART-CL (SMART I), Tchs = 20 andNmax = 5,K = 4; (b) SMART-FMM (SMART II),
Nmax = 5, K = 4; (c) ULFMM, kmax = 30, K = 7; (d) SSMCL, kmax = 30, K = 8; (e) MFA, q = 5, K = 3;
(f) MCFA, q = 6, K = 5; (g) MCLUST, K = 3; (h) PFClust. Sub-figures (a) and (b) show that four clusters
represent reasonably good clustering since there are only few small overlap regions between clusters.
Sub-figures (c) and (d) indicate that many clusters crowd and overlap in the region 5–30%, especially in
Sub-figure (c), where a clustering representing peaking at 20% superimposes on another cluster, which
spans over 10–30%. These overlapped clusters have to be one cluster. Sub-figures (e) and (f ) show that
MFA and MCFA also give reasonably good clustering results when judged by eye; however, clustering
is poorer than SMART-FMM in the numerical metrics. Sub-figures (g) and (h) show the distribution
of the peak times of genes based on the clustering results of MCLUST and PFClust, respectively
(See insert for color representation of the figure)
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results judged by eye, however being poorer than SMART-FMM in the numerical metrics.
Figure 23.5(g) and (h) show the distribution of peak times of genes based on the clustering
results of MCLUST and PFClust, respectively. MCLUST has a very similar performance to
MFA. The partition provided by PFClust has a cluster (labelled by brown circles) overlapping
with other clusters. The numerical metrics consistently indicate that PFClust performs poorly in
the R2 dataset. Since DBSCAN andVBGMdo not provide a reasonable result, we do not depict
these in Figure 23.5. The results reveal that the SMART algorithms, especially SMART-FMM,
provide a better representation than do other algorithms.

23.7 Discussion

A recently proposed SWM clustering framework, named SMART, has been described in this
chapter. The framework employs an SWM process and intrinsically integrates many clustering
techniques. SMART has the ability to split and merge the clusters automatically during the
process. Once the stop criterion is met, the SWM process terminates and the optimal clustering
result is selected as the final outcome by applying the selection criterion. Three main properties
of the proposed SMART framework are summarised as: (1) needing no parameters dependent
on the respective dataset or a priori knowledge about the datasets, (2) extendible to many
different applications, (3) and offering superior performance compared with counterpart
algorithms when tested on some benchmark and real biological datasets.
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24
Tightness-tunable Clustering
(UNCLES)

24.1 Introduction

While considering a specific biological problem, most of the genes in the considered species’
genome are expected to be irrelevant. Therefore, clustering the entire genome in a way that
assigns each single gene to one of the output clusters does not conform to that biological fact.
One commonly adopted approach to overcome this issue is to start by identifying a filtered subset
of genes which are expected to be of interest through gene selection (Chapter 8) or differentially
expressed genes identification (Chapter 9), and then to apply clustering to this filtered subset.
Another approach, which has been proposed recently through the design of a sophisticated
ensemble-clustering framework, has the crucial feature of producing clusters with tunable tight-
ness. The core method in this framework is the unification of clustering results from multiple
datasets using external specifications (UNCLES), which is followed by a clustering-validation
technique based on the M–N scatter plots. In this chapter we present this framework while
discussing the various biological and computational problems that it tackles.

24.2 Bi-CoPaM Method

The binarisation of consensus partition matrices (Bi-CoPaM) method has been proposed
recently to tackle various biology-specific clustering issues (Abu-Jamous et al., 2013c). Given
a set of L datasetsX1,…,XLwhich measure the genetic expression of the same set of genes, and
a set of C clustering methods M1,…,MC, the Bi-CoPaM method is applied through four main
steps described in the following four sub-sections.
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24.2.1 Partition Generation

R = L ×C partitions are generated by applying each of the C clustering methods to each of the L
datasets while considering a constant number of clusters (K). The resulting R partitions are
represented by the partition matrices U1 to UR, where each of which has K rows representing
the clusters and N columns representing the genes (data points). The element urk, i represents
the membership of the i-th gene (data point) in the k-th cluster according to the r-th partition.
Three constraints [shown in Equations (24.1)–(24.3)] control these partition matrices:

urk, i 0, 1 , r, k, i 24 1

K

k = 1

urk, i = 1, r, i 24 2

0 <
N

i = 1

urk, i <N, r, k 24 3

The first constraint states that the membership of any given gene in any given cluster based on
any given partition must be between zero and unity inclusively. If it was zero, the gene does not
belong to that cluster at all; if it was equal to unity, the gene completely belongs to that cluster;
while if it was between those values, the gene partially belongs to that cluster. In the special case
of binary partitions, this membership value can have the value of only either zero or unity. The
second constraint states that the total of the membership values of a specific gene in all of the
clusters in a given partition must be unity. The third constraint states that each cluster must
include some genes but not all of them.

24.2.2 Relabelling

Because clustering is unsupervised, there are no labels which map the clusters in one partition
to their corresponding clusters in another partition. Therefore, the relabelling step is needed for
this mapping. Given two partitions, the relabelling process can be modelled as a labelling cor-
respondence problem, which is an NP-complete problem (Ayad and Kamel, 2010; Vega-Pons
and Ruiz-Shulcloper, 2011), rendering the brute-force solution infeasible. Two techniques
were considered for relabelling in Bi-CoPaM applications, namely the min-max (Abu-Jamous
et al., 2013c; Abu-Jamous et al., 2013d) and the min-min approaches (Abu-Jamous et al.,
2013a; Abu-Jamous et al., 2013b).
Let the function Relabel(U, Uref) represent the solution to the problem of relabelling the

clusters (rows) in the partition matrix U to be matched with the clusters (rows) in the reference
partition matrixUref, and letÛ denote the resulting partition after relabelling. The first step is to
produce a cluster-pairwise matrix with rows representing the clusters of U and columns repre-
senting the clusters of Uref. Each element of this matrix represents the distance (dissimilarity)
between the two corresponding clusters’ membership vectors. Hamming distance can be used
for binary clusters, while Manhattan or Euclidean distances can be generally used for fuzzy and
binary clusters. An example of two pairwise similarity matrices is shown in Figure 24.1.

386 Integrative Cluster Analysis in Bioinformatics



In the min-max approach, the minimum of each column in the matrix is found, and then the
maximum of these minima is identified (Figure 24.1a). The pair of clusters which produced this
maximum of minima are mapped to each other, the corresponding row and column are deleted
(shaded in Figure 24.1a), and the process is repeated iteratively over the remaining matrix until
all clusters are mapped. The min-min approach follows a similar approach but while consid-
ering the minimum of the minima rather than the maximum of them (Figure 24.1b).
The min-max approach aims at optimising the entirety of the relabelled clusters by avoiding

convergence to the local minima that the min-min approach would converge to. This is because
it gives priority to the clusters which do not have very strong similarity to any of the clusters in
the other partition to be mapped to their relatively most similar cluster first. An example of this
is the cluster which corresponds to the third column in the matrix in Figure 24.1a. In this case, if
the excellent zero-distanced clusters, which are represented by the second row and the second
column, were mapped to each other first, the cluster represented by the third column will be
left with only relatively very dissimilar clusters to be paired with. The min-max approach
tackles this problem by aiming at optimising the total of the dissimilarity values between
the mapped pairs.
On the other hand, the min-min approach gives higher priority to the best matched pairs first,

which is expected to produce some excellent pairs and many poor ones. This is useful when
there are few clusters of interest within the results, and mapping them with their best peers
should be preferably assured even if this affects the quality of the rest of the clusters. An exam-
ple is shown in Figure 24.1b where there are four very good pairs of clusters out of ten. The
min-min approach will result in producing those pairs of mapped clusters, namely the ordered
pairs (2, 1), (3, 2), (7, 8) and (9, 4), while the six remaining pairs will be poor. In contrast, if the
min-max approach were applied to this latter matrix, the first pair to be matched will be the
ordered pair (2, 5). Note that the column (5) represents a cluster that is very dissimilar from
all of the clusters represented by the rows. In this case, column (5) will be consuming the cluster
represented by the second row, and preventing it from being mapped to its real best-match; that
is, the first column. If the application requires obtaining few high-quality clusters, the min-min
approach is surely the choice.
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Figure 24.1 Sample cluster pairwise similarity matrix. (a) min-max approach. (b) min-min approach.
The minimum of each column is shown in the last row and the (a) maximum or the (b) minimum of
these minima is shaded
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24.2.3 Fuzzy Consensus Partition Matrix Generation

Once the clusters in the partitions are relabelled, they are averaged in an element-by-element
manner to produce a single fuzzy consensus partition matrix (CoPaM). This process is done by
considering the first partition matrix U1 as the first reference matrix Uref and relabelling the
second partition U2 based on it. The two partitions are then combined by element-by-element
averaging to produce the first intermediate fuzzy CoPaM Uint(1). This intermediate matrix is
then considered as the reference partition to relabel the following partition matrix, which is
combined with it again to produce a new intermediate fuzzy CoPaM. After having relabelled
and combined all of the R partition matrices, the last intermediate fuzzy CoPaM Uint(R) is
considered as the final fuzzy CoPaM U∗. This iterative process can be summarised by the
following steps:

Uint 1 =U1

For r = 2 to R

Ur =Relabel Ur, Uint r−1

Uint r =
1
r

r

r = 1

U
r
=
1
r
Ur +

r−1
r

Uint r−1

U∗ =Uint R

24.2.4 Binarisation

The final stage of the Bi-CoPaM method is the binarisation of the fuzzy CoPaM by using one of
six binarisation techniques. The result of binarisation is a binary CoPaM in which each gene’s
membership in each of the clusters is binary; that is, either zero (does not belong) or one
(belongs). However, this method’s binarisation relaxes the constraints in Equations (24.2) and
(24.3), which control genes and clusters, respectively. At the level of genes, the gene can be
exclusively assigned to a single cluster, which meets the constraint in Equation (24.2), but it
can also be assigned tomultiple clusters simultaneously or not to be assigned to any of the clusters
at all. At the level of clusters, they can be complementary, as conventional clustering would pro-
duce, but they can also be wide and overlapping or tight and focused. Some clusters might be
tightened to the extreme level at which they become totally empty, which does not meet the con-
straint in Equation (24.3).
Six binarisation techniques were proposed in Abu-Jamous et al. (2013c), and they belong to

two main tracks as shown in Figure 24.2. The first track includes the techniques top binarisation
(TB), maximum value binarisation (MVB) and difference threshold binarisation (DTB), and will
be referred to hereinafter as the TB-MVB-DTB track. The second track includes the techniques
union binarisation (UB), value threshold binarisation (VTB) and intersection binarisation (IB),
and will be referred to hereinafter as the UB-VTB-IB track.
We start by describing the MVB technique; it assigns the gene exclusively to the cluster in

which it has its largest membership value, and therefore it generates complementary clusters.
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Let the resulting binary CoPaM be B∗ with K rows and N columns, where b∗k, i 0, 1 is an
element in this matrix representing the binary membership of the ith gene in the kth cluster.
Similarly, the corresponding fuzzy CoPaM is U∗ with the elements u∗k, i 0, 1 . Given that,
the MVB technique can be expressed as given in Equation (24.4):

b∗k, i =
1, u∗k, i = max

1 ≤ j ≤K
u∗j, i

0, otherwise
24 4

The TB technique moves from the MVB technique towards the wider-clusters side of the TB-
MVB-DTB track. This is because it assigns the given gene to multiple clusters simultaneously
if its membership values in them are not further than the value of the tuning parameter δ below
its maximum membership value. The TB technique is expressed as shown in Equation (24.5):

b∗k, i =
1, u∗k, i ≥ max

1 ≤ j ≤K
u∗j, i−δ

0, otherwise
24 5

On the other hand, and in a symmetric manner, the DTB technique moves from the MVB
technique towards the tighter-clusters side of the track. This is by assigning a gene to the cluster
in which it has its maximum membership value only if this value is far from the closest
competitive cluster at least by the value of the tuning parameter δ; it is not assigned to any
of the clusters otherwise. The DTB technique is expressed as shown in Equation (24.6):

b∗k, i =

1, u∗k, i ≥ max
1 ≤ j ≤K,

j k

u∗j, i + δ

0, otherwise

24 6

When δ is equal to zero in TB or DTB, these techniques become identical to the MVB tech-
nique. When δ increases, TB or DTB start widening or tightening the clusters, respectively. The
maximum value of δ is unity. When this value is reached, the TB technique reaches the extreme
case of wide clusters in which each one of the clusters includes all of the genes. Also, at the

Complementary MVB

Widest

Tightest

IB

T
B

D
T
B

V
T
B

UB

Figure 24.2 Binarisation tracks
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δ value of unity, the DTB produces the tightest clusters in which a gene is assigned to a cluster
only if its fuzzy membership value is equal to unity in that cluster and is equal to zero in all of
the other clusters; that is, if all of the R individual partitions have consensually assigned that
gene to that cluster. Although the DTB would generate many empty clusters at δ = 1.0, this
result would not be trivial if some of the clusters still preserved some genes up to this tightest
level, as opposed to the TB technique’s results at such a δ value.
As for the second track, the UB technique assigns each gene to all of the clusters in which it

has non-zero fuzzymembership values; that is, to all of the clusters in which at least one of the R
individual partitions has assigned it. This generates wide and overlapping clusters. The UB
technique is expressed as given in Equation (24.7):

b∗k, i =
1, u∗k, i > 0

0, otherwise
24 7

On the other hand, the IB technique assigns a gene to a cluster only if all of the R individual
partitions have consensually assigned that gene to it; that is, if its fuzzy membership value in it
is unity while being zero elsewhere. This technique generates the tightest and most focused
clusters, and is equivalent to the tightest clusters generated by the TB-MVB-DTB track, namely
by the DTB technique at δ = 1.0. The IB technique is expressed as given by Equation (24.8):

b∗k, i =
1, u∗k, i = 1 0

0, otherwise
24 8

The VTB technique assigns a gene to a cluster if its membership in it is larger than or equal to
the value of the tuning parameter α. When α is equal to zero, the VTB assigns each gene to all of
the clusters, which is a trivial and useless result. At α = ε, where ε is an arbitrarily small real
positive number, the VTB technique becomes identical to the UB technique, and at α = 1.0, it
becomes identical to the IB technique. As the value of α increases from ε to unity, the clusters
are tightened. The VTB technique is expressed as shown in Equation (24.9):

b∗k, i =
1, u∗k, i ≥ α

0, otherwise
24 9

24.3 UNCLES Method - Other Types of External Specifications

The general aim of the Bi-CoPaM method is to identify the subsets of genes that are consist-
ently co-expressed in all of the given datasets. The different tunable binarisation techniques
control how consistent this co-expression needs to be. Given the clustering results for the same
set of genes from multiple datasets, other types of external specifications can be imposed while
inferring the final consensus result. An important type of such external specifications is to com-
bine the partitions to identify the subsets of genes that are consistently co-expressed in a subset
of datasets while being poorly co-expressed in another subset of datasets. The method of the
unification of the clustering results from multiple datasets using external specifications,
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abbreviated as UNCLES, generalises the Bi-CoPaM method by allowing various types of
external specifications to be used in the process of combining partitions.
Two types of external specifications are described here:

Type A: the partitions are combined to identify the subsets of genes that are consistently
co-expressed in all of the given datasets. This is equivalent to the Bi-CoPaM method.

Type B: the partitions are combined to identify the subsets of genes that are consistently
co-expressed in a subset of datasets (S+) while being poorly consistently co-expressed in
another subset of datasets (S−).

To apply UNCLES type B, the type A (Bi-CoPaM) is applied to each of the two subsets of
datasets S+ and S−separately while considering the DTB binarisation technique with the δ values
of δ+ and δ−respectively. Then, the genes that are included in the S+ results and not included in
the S− results are included in the final result. The given result is referred to as the result of apply-
ing the UNCLES type B method with the tuning parameter pair (δ+, δ−). The parameter δ+ con-
trols how well co-expressed the genes should be in the S+ datasets to be included in the final
result, while the parameter δ− controls howwell co-expressed the genes should be in the S− data-
sets to be excluded from the final result. Note that at the pairs (δ+, 0) empty clusters are generated
because at δ− = 0 all of the genes will be excluded from the final result.

24.4 M–N Scatter Plots Technique

Both types of UNCLES generate clusters with varying levels of wideness/tightness, which lead
to largely varying sizes of such clusters. Known validation techniques are significantly affected
by such variations. Therefore, a customised and sophisticated cluster-evaluation and -validation
technique has been recently proposed; that is, theM–N scatter plots technique, whereM refers to
a modified version of the mean-square error (MSE) metric, and N refers to the number of genes
included in the cluster, or, more specifically, the logarithm of that number (Abu-Jamous et al.,
2014a,b). The objective of the M–N scatter plots technique is to maximise the size of the cluster
while minimising the mean-square error. This multi-objective technique suites the tunable
nature of the clusters generated by the UNCLES method.
The M–N scatter plot is a 2-D plot on which the clusters are scattered, where the horizontal

axis represents the MSE-based metric (MSE∗) defined below, and the vertical axis represents
the 10-based logarithm of the number of genes included in the cluster. The clusters closer to the
top-left corner of this plot, after scaling each axis to have a unity length, are those that include
more genes while maintaining lowMSE∗ values, and are considered as better clusters based on
this technique.
A sample M–N scatter plot is shown in Figure 24.3a. Each point on this plot represents one

non-empty cluster where the one closest to the top left corner in Euclidean distance, after scal-
ing the plot to have unity length at each side, is marked with a big solid circle, and is selected as
the best cluster. The stars represent all of those clusters which are considered as other versions
of that best cluster, and this can be identified based on the size of the overlap between the
clusters. Before selecting the second best cluster, those clusters with similarity to the first best
cluster are removed from the plot, and the resulting updated M–N plot, in this case, is shown in
Figure 24.3b. The same step is repeated iteratively to select many clusters until the M–N plot
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has no more clusters or a specific termination criterion is met. For example, after 20 iterations,
the M–N plot in Figure 24.3a becomes totally empty; the first three iterations are shown in
Figure 24.3. The selected 20 clusters are ordered in quality from the closest to the top-left corner
to the farthest, and those 20 distances are shown in Figure 24.4. Although 20 clusters are found
in this example, the grace of having the clusters ordered allows selecting a few top clusters only.
As in Figure 24.4, there is a large gap in distances between the second and the third clusters,
which would lead the researcher to restrict oneself to the first two clusters only for further bio-
logical analysis.
The MSE-related metric (MSE∗) is defined differently for UNCLE types A and B to meet

their different objectives. For type A, the MSE∗metric is the average of the MSE values for the
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Figure 24.3 A sample of three iterations of cluster selection based onM–N scatter plots. (a) M–N scatter
plot for the first iteration of cluster selection; this includes points for all of the available clusters; (b) the
M–N scatter plot for the second iteration of cluster selection; this includes a subset of points of what is
in (a); (c) the M–N scatter plot for the third iteration; this includes a subset of points of what is in (b)
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Figure 24.4 Distances of the 20 ordered clusters selected by the M–N plots from the top-left corners of
those plots (shown in Figure 24.3)
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considered cluster across all of the given datasets; whereas for type B, it is the signed difference
between the average of the MSE values across the positive subset of datasets (S+) and that aver-
age across the negative subset of datasets (S−).

24.5 Parameter-free UNCLES with M–N Plots

The UNCLES method requires a number of parameters to run. One important parameter is K,
which is a common parameter for most of the existing clustering methods. Other parameters
include the tuning parameters δ, (δ+, δ−), and α for the different binarisation techniques of
the method. The M–N scatter plots technique solves the problem of setting these parameters
by its ability to evaluate the clustering results at the level of clusters rather than the level of
partitions. In other words, the M–N scatter plots technique does not give a quality measure
for an entire partition as many other measures do (e.g. Calinski–Harabasz (CH), Dunn index
(DI), geometrical index (GI) and others); it rather evaluates each cluster individually, and then
ranks them based on their relative quality. This feature can be exploited by considering multiple
executions of the UNCLES method, each with a different parameter setting, and then exposing
all of the generated clusters to M–N plots for final clusters selection.
The selected best few clusters might belong to different partitions; that is, they might have

been generated at different K values or while considering different tightness levels. This means
that the final result would not state which of the adopted K values or tuning parameters’ values
is the optimum; it would rather select the best clusters from the complete pool of clusters
regardless of their origin. Another important note is that if different parameter settings resulted
in very similar versions of the same cluster, the closest of the versions to the top-left corner will
be selected only once and the rest are removed to allow for selecting the next distinct cluster.

24.6 Discussion and Summary

The UNCLES consensus clustering method has the ability to mine multiple datasets in order to
identify focused subsets of genes that have consistent co-expression patterns under the given
external specifications. Two main types of external specifications are presented in this chapter;
type A requires the subsets of genes to be consistently co-expressed across all of the given data-
sets, while type B requires the subsets of genes to be consistently co-expressed in one subset of
datasets while being poorly co-expressed in another subset of datasets.
Several parameters need to be set for the UNCLES methods, most notably K and the tuning

parameters δ and (δ+, δ−). Since modifying those parameters results in different clusters with
largely varying sizes, conventional cluster validation would not be suitable to evaluate the qual-
ity of such clusters in order to select the best of them. However, and as part of the UNCLES
complete framework, the M–N scatter plots technique has been proposed in order to evaluate
the results of UNCLES. The M–N scatter plots technique aims at minimising dispersion within
the cluster (measured by the MSE), while maximising the size of the cluster. Given that, the
framework of the UNCLES method and the M–N scatter plots provides complete pipelined
steps for parameter-free, focused, and collective analysis of multiple expression datasets.
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Appendix

High-throughput Data Resources

Database Provider Description

PubMed NCBI Literature citations
PMC NCBI Full-text journal papers
Bookshelf NCBI Books, reports, and documents
MeSH NCBI/US NLM Medical subject headings
GenBank NCBI DNA sequences
RefSeq NCBI DNA, RNA, and protein sequences (accessed by

GenBank (Nucleotide) and Protein databases)
Entrez Gene NCBI Genes
Protein NCBI Proteins
GEO Series NCBI Microarray and NGS expression datasets
GEO Platforms NCBI Microarray and NGS platforms
GEO Samples NCBI Microarray and NGS expression samples
Taxonomy NCBI Organisms
HomoloGene NCBI Genes’ homologues
SRA NCBI Next-generation sequencing (NGS) experiments

and results
dbSNP NCBI Single-nucleotide polymorphisms and short sequence

variations
dbVar NCBI Large sequence variations (insertions, deletions,

translocations, and inversions)
BioProject NCBI Biological projects (studies)
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Integrative Cluster Analysis in Bioinformatics, First Edition. Basel Abu-Jamous, Rui Fa and Asoke K. Nandi.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



(continued)

Database Provider Description

BioSample NCBI Biological samples (e.g. expression data and
epigenomics)

BioSystems NCBI Biological systems (e.g. metabolic and
signalling pathways)

PubChem
Substance

NCBI Chemical substances submitted by researchers

PubChem
Compound

NCBI Validated chemical structures – links to PubChem
Substance

PubChem Bio-
Assay

NCBI Bioactivity assays which screen chemical substances

dbGaP NCBI Associations of genotypes and phenotypes
MMDB NCBI Protein 3D structures
Genome NCBI Whole genomes
UniGene NCBI Transcript sequences that appear to come from the

same transcriptional locus
Ensembl EMBL-EBI and

Wellcome Trust
Sanger Institute

Genomic data for model vertebrate species and a few
model non-vertebrate species (e.g. C. elegans,
D. melanogaster, and S. cerevisiae)

Ensembl
Genomes

EMBL-EBI Extends Ensembl database by including thousands
of genomes

EGA EMBL-EBI Associations of genotypes and phenotypes
ENA EMBL-EBI Nucleotide (DNA and RNA) sequences
GWAS EMBL-EBI and US

NHGRI
Single-nucleotide polymorphisms

ArrayExpress
Archive

EMBL-EBI Microarray and NGS expression data

Expression
Atlas

EMBL-EBI Additional layer of analysis to the data in the
ArrayExpress Archive

PRIDE EMBL-EBI Proteomic data (e.g. protein-expression data)
MetaboLights EMBL-EBI Metabolomic data
Omics Archive DDBJ Microarray and NGS expression data
UniProt EMBL-EBI and others Protein sequences and information
InterPro EMBL-EBI Protein families, domains, functional sites, and motifs
EMDB EMBL-EBI Electron microscopy data
PDBe EMBL-EBI Protein molecular structures and cellular structures
ChEMBL EMBL-EBI Chemical biology data
ChEBL EMBL-EBI Chemical biology data
BioModels EMBL-EBI Computational models of biological processes
IntAct EMBL-EBI Molecular interactions
Reactome EMBL-EBI Curated human pathways
Enzyme portal EMBL-EBI Enzymes functions, structures, reactions, pathways,

substrates, and so on.
Europe PMC EMBL-EBI and others Full-text literature; part of the NCBI international

PMC
GO GO Consortium Gene ontologies (biological processes, molecular

functions, ad cellular components)
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(continued)

Database Provider Description

EFO EMBL-EBI An added-value GO databases annotating gene
expression, genome-wide associations, and
integrating genomic and disease data

EBI
BioSamples

EMBL-EBI Biological samples (gene expression, epigenomics,
and others)

HMDB University of Alberta Chemical, clinical, and biochemical information about
human metabolites

MGI/MGD Jackson Laboratory Mouse genomes
MGI/GXD Jackson Laboratory Mouse gene expression data
MGI/MTB Jackson Laboratory Mouse tumour data
MGI/MPD Jackson Laboratory Mouse phenome data
EMAP/EMA UKMRC, Jackson Lab, and

Heriot-Watt University
Mouse anatomy

EMAP/
EMAGE

UKMRC, Jackson Lab, and
Heriot-Watt University

Mouse gene expression spatial data

RGD Medical College of
Wisconsin

Rat genome, genes, phenotypes, strains, diseases,
physiology, and nutrition

Xenbase International community Frog genus Xenopus genomic, expression,
and functional data

ZFIN University of Oregon Zebrafish genetic, genomic, and developmental data
WormBase International community Worm C. elegans and related roundworms genetic

and genomic data
FlyBase International community Fruit fly genus Drosophila genetic and genomic data
GreenPhyl Biodiversity International

and CIRAD
Plant genomes integrative and comparative analysis

PlantDB Munich MIPS Plant genomes integrative and comparative analysis
TAIR Phoenix Bioinformatics

Corporation
Thale cress (A. thaliana) genetic, proteomic, metabolic,
and other data

MaizeDB International community Maize crop (Z. mais) genetic, proteomic, metabolic,
and other data

SGD Stanford University Baker’s budding yeast (Saccharomyces genus) genetic,
genomic, proteomic, structural, literature, and other data

CGD Stanford University Budding yeast (Candida genus) genetic, genomic,
proteomic, structural, literature, and other data

MycoCosm US Department of Energy
Joint Genome Institute

Fungal genome portal for integrated fungal genomic
data and promotes for the 1000 genomes project

CYGD Munich MIPS Baker’s yeast (S. cerevisiae) molecular structures
and functional networks

YMDB University of Alberta,
Canada

Baker’s yeast (S. cerevisiae) metabolome database

YeastNet Yonsei University, Korea Baker’s yeast (S. cerevisiae) integrated functional
gene networks

MBGD Japan Society for the
Promotion of Science

Comparative genome analysis of completely
sequenced microbial genomes (bacteria, archaea,
and few eukaryotes)

(continued overleaf )
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(continued)

Database Provider Description

PATRIC Virginia Bioinformatics
Institute

Bacterial integrated genomic, transcriptomic,
proteomic, structural, and sequencing data

IMG and
IMG/M

University of California Integrated annotation, analysis, and distribution of
microbial genomic and metagenomic datasets

BacDive Leibniz Institute DSMZ Bacterial and archaeal taxonomic, morphologic,
physiologic, environmental, and molecular-
biological information

COLOMBOS International community Cross-platform microarray datasets for
organism-specific bacteria

PortEco A consortium of US
laboratories

Model bacteria E. coli comprehensive resource

ViralZone Swiss SIB Viral bioinformatics resource
Virus Variation
Resource

NCBI Viral gene and protein sequence annotations
and relevant metadata

Normalisation Methods

Method Platform/package Function

Background correction
(general)

R/Bioconductor - affy expresso
bgcorrect

Contrast normalisation R/Bioconductor - affy normalize.contrasts
normalize.AffyBatch.contrasts

Cyclic loess normalisation R/Bioconductor - limma normalizeCyclicLoess
Filter low absolute-value
genes

MATLAB genelowvalfilter

Filter low-entropy genes MATLAB geneentropyfilter
Filter small-range genes MATLAB generangefilter
Filter small-variance genes MATLAB genevarfilter
GC-RMA MATLAB affygcrma

gcrma
gcrmabackadj

Invariant set normalisation MATLAB affyinvarsetnorm
mainvarsetnorm

R/Bioconductor - preprocessCore normalize.invariantset
normalize.AffyBatch.invariantset

Loess/lowess normalisation MATLAB malowess
R/Bioconductor - preprocessCore normalize.loess

normalize.AffyBatch.loess
MAS 5.0 R/Bioconductor - affy mas5
MBEI R/Bioconductor - affy expresso (with specific set

of parameters)
Normalisation (general) R/Bioconductor - affy normalize
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(continued)

Method Platform/package Function

Quantile normalisation MATLAB quantilenorm
R/Bioconductor - preprocessCore normalize.quantiles

normalize.quantiles.robust
normalize.AffyBatch.quantiles

RMA MATLAB affyrma
rmabackadj
rmasummary

R/Bioconductor - affy rma
Scaling and centring MATLAB manorm

R/Bioconductor - preprocessCore normalize.constant
Summarisation (general) R/Bioconductor - affy summary

Feature-selection Methods

Method Platform/package Function

Feature ranking MATLAB rankfeatures
R/FSelector cutoff.k

cutoff.k.percent
cutoff.biggest.diff

Random feature selection MATLAB randfeatures
PCA MATLAB pca

R/stats princomp
Genetic algorithm MATLAB ga

R/genalg rbga
rbga.bin

Differential Expression Methods

Method Platform/package Function

Adjusted p-value R p.adjust
R/Bioconductor - limma topTable

ANOVA MATLAB anova1
anova2
kruskalwallis
multcompare

ANOVA R aov
anova

(continued overleaf )
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(continued)

Method Platform/package Function

baySeq R/baySeq
BBSeq R/BBSeq
B-statistic R/Bioconductor – limma eBayes

topTable
DESeq R/DESeq
edgeR R/edgeR
FDR for multiple
hypotheses

MATLAB mafdr

Fisher’s exact test MATLAB By the hypergeometric cumulative distribution
function:

hygecdf
Fisher’s exact test R fisher.test
Fold change R/Bioconductor – limma topTabe
Fold change MATLAB mavolcanoplot
Likelihood ratio test MATLAB lratiotest
Likelihood ratio test R/lmtest lrtest
MA scatter plot MATLAB mairplot
MA scatter plot R/Bioconductor – limma plotMA
Moderated t-test R/Bioconductor – limma topTable
q-value MATLAB mafdr
q-value MATLAB topTable
Student’s t-test MATLAB ttest

ttest2
mattest

Student’s t-test R t.test
Volcano plot MATLAB mavolcanoplot
Volcano plot R/Bioconductor – limma volcanoplot

Partitional Clustering Algorithms

Algorithm name Year Platform Package Function

k-means 1967 R/MATLAB/
JAVA

Statistics/stats/
weka

kmeans/kmeans/Simple
K-Means

k-medoids 1990 R cluster pam
Genetic k-means 1999 R skmeans skmeans (method=‘genetic’)
Spherical k-means 2001 R skmeans skmeans
Kernel k-means 2002 R kernlab kkmeans
Spherical
k-medoids

2006

Genetic
k-medoids

2006

The summary of all partitional clustering algorithms introduced in this chapter.
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MATLAB Linkage Functions

Method Description

‘average’ Unweighted average distance (UPGMA)
‘centroid’ Centroid distance (UPGMC), appropriate for Euclidean distances only
‘complete’ Complete linkage/Furthest distance
‘median’ Weighted centre of mass distance (WPGMC), appropriate for Euclidean distances only
‘single’ Single linkage/shortest distance
‘ward’ Minimum variance algorithm, appropriate for Euclidean distances only
‘weighted’ Weighted average distance (WPGMA)/McQuitty’s methods

The ‘method’ argument of function linkage in MATLAB determines the algorithm for computing distance between
clusters.

Fuzzy Clustering Algorithms

Algorithm name Platform Package Function

Fuzzy c-means R/MATLAB e1071 cmeans/fcm
FANNY R cluster Fanny
Fuzzy c-shell R e1071 cshell
Fuzzy cluster indices R e1071 fclustIndex

Summary of the publicly accessible resources of fuzzy clustering algorithms.

Neural Network-based Clustering Methods

Algorithm name Platform Package Function

SOM R kohonen/som/wccsom som
MATLAB newsom/train/sim
weka Weka.clusterers SelfOrganizingMap

ART R RSNNS art1/art2/artmap

Collection of publicly accessible resources for neural network-based clustering.

Mixture Model-based Clustering Methods

Algorithm name Platform Package Function

GMM-EM R mclust mclust
GMM-VBEM MATLAB Chen, (2012) vbgm
MFA-EM MATLAB Ghahramani (2000) mfa
MFA-VBEM MATLAB Ghahramani (2000) vbmfa
BHC R BHC bhc
Bayesian nonparametric R DPpackage

Collection of publicly accessible resources for mixture model-based clustering.
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Graphs and Networks File Formats and Storage

Format Filename Ext Comments

GraphML .graphml An XML-based file format for graphs
XGMML .xml (The eXtensible Graph Markup and Modelling Language) is an XML

application based on GML which is used for graph description
Pajek
NET

.net Pajek (Slovene word for Spider) is a program, for Windows, for analysis
and visualisation of large networks.

Graphlet
GML

.gml Graphlet is GML graph data format. GML is an acronym derived from
Graph Modelling Language

Graphviz
DOT

.dot DOT is the text file format of the suite GraphViz.

CSV .csv A comma-separated values (CSV) (also sometimes called character-
separated values) file stores tabular data in plain-text form.

UCINET
DL

.dl UCINET DL format is the most common file format used by UCINET
package. UCINET 6 for Windows is a software package for the analysis
of social network data

GXL .gxl GXL (Graph eXchange Language) is designed to be a standard exchange
format for graphs.

Text .txt Delimited text table

Summary of file formats as a storage of graphs and network.

Graph-clustering Algorithms

Name Year Reference Software

Minimum-cut criterion 1993 Wu and Leahy (1993)
METIS 1995 Karypis and Kumar (1995, 1998)
Normalised cut 2000 Shi and Malik (2000)
Markov clustering 2000 van Dongen (1998) C (van Dongen, 2012)
Spectral clustering 2001 Ng, Jordan and Weiss (2001);

Luxburg (2007)
Greed method of Newman 2004 Newman (2004) MATLAB (MIT, 2011)
Spectral modularity optimisation 2006 Newman (2006) MATLAB (MIT, 2011)
Affinity propagation 2007 Frey and Dueck (2007) MATLAB/R

(Frey, 2011)
Directed networks 2008 Leicht and Newman (2008) MATLAB (MIT, 2011)
Overlapping community 2013 Gopalan and Blei (2013)

Summary of graph-clustering algorithms mentioned in Chapter 16.
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Consensus Clustering Algorithms

Name Year Reference Software

Voting-merging 2001 Dimitriadou, Weingessel and
Hornik (2001)

Resampling methods 2003 Monti et al. (2003)
MCL (MetaClustering) 2003 Strehl and Ghosh (2003)
CSPA
HGPA
Best-of-k 2004 Filkov and Skiena, (2004)
SAOM
BOM (Mirkin distance)
Clustering ensembles weak 2005 Topchy, Jain and Punch, (2005)
Evidence accumulation 2005 Fred and Jain (2005)
Graph Consensus
Clustering (GCC)

2007 Yu, Wong and Wang (2007)

Clustering Aggregation 2007 Gionis, Mannila and Tsaparas (2007)
Consensus Clustering 2010 Brannon et al. (2010); Seiler et al.

(2010)
Python (Seiler et al.,
2010)

Summary of consensus clustering algorithms mentioned in Chapter 17.

Biclustering Algorithms

Bicluster method Class Year Availability

δ-clustering (Hartigan, 1972) 1972
CC (Cheng and Church, 2000) VMB 2000 Barkow et al. (2006); Kaiser and Leisch

(2008); Eren et al. (2013)
δ-jk (Califano, Stolovitzky
and Tu, 2000)

2000

CTWC (Getz, Levine and Domany,
2000)

TWC 2000

ITWC (Tang et al., 2001) TWC 2001
DCC (Busygin et al., 2002; Busygin,
Prokopyev and Pardalos, 2008)

TWC 2002

SA (Ihmels et al., 2002; Ihmels,
Bergmann and Barkai, 2004)

TWC 2002 Barkow et al. (2006)

Plaid (Lazzeroni and Owen, 2002;
Turner, Bailey and Krzanowski, 2005)

PGM 2002 Kaiser and Leisch (2008); Eren et al. (2013)

SAMBA (Tanay, Sharan and
Shamir, 2002)

PGM 2002

δ-Pclustering (Wang et al., 2002) VMB 2002
Gibbs clustering (Sheng, Moreau
and Moor, 2003)

PGM 2003

ISA (Bergmann, Ihmels and
Barkai, 2003)

TWC 2003 Eren et al. (2013)

(continued overleaf )
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(continued)

Bicluster method Class Year Availability

OP-clustering (Liu and Wang, 2003;
Liu, Wang and Yang, 2004)

CMB 2003

OPSM (Ben-Dor et al., 2003) CMB 2003 Barkow et al. (2006); Eren et al. (2013)
Spectral (Kluger et al., 2003) VMB 2003 Kaiser and Leisch (2008); Eren et al. (2013)
xMOTIF (Murali and Kasif, 2003) VMB 2003 Barkow et al. (2006); Kaiser and

Leisch (2008); Eren et al. (2013)
GEM (Wu et al., 2004; Wu and
Kasif, 2005)

PGM 2004

FLOC (Yang et al., 2005) CMB 2005
SA (Bryan, Cunningham and
Bolshakova, 2005)

CMB 2005

ZBDD (Yoon et al., 2005) VMB 2005
ROBA (Tchagang and Twefik, 2005) CMB 2005
Bimax (Prelic et al., 2006) CMB 2006 Barkow et al. (2006)
CMonkey (Reiss, Baliga and
Bonneau, 2006)

PGM 2006

SEBI (Divina and Aguilar-Ruiz, 2006) VMB 2006
MOEB (Mitra and Banka, 2006) CMB 2006
UBCLUST (Li et al., 2006) CMB 2006
R/MSBE (Liu and Wang, 2007) VMB 2007
Bayesian biclustering (Gu and
Liu, 2008)

PGM 2008 Eren et al. (2013)

ACV (Teng and Chan, 2008) CMB 2008
Bayesian plaid (Caldas and Kaski, 2008) PGM 2008
BiMine (Ayadi, Elloumi and Hao, 2009) CMB 2009
CPB (Bozdağ, Parvin and
Catalyurek, 2009)

CMB 2009 Eren et al. (2013)

COALESCE (Huttenhower et al., 2009) CMB 2009 Eren et al. (2013)
QUBIC (Li et al., 2009) VMB 2009 Eren et al. (2013)
FABIA and FABIAS (Hochreiter et al.,
2010)

PGM 2010 Eren et al. (2013)

TreeBic (Caldas and Kaski, 2010) PGM 2010

Summary of biclustering algorithms.
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TATA motif. (c) Transcription initiation; TFIIB and the RNA polymerase II complex are recruited to the
start of transcription site, and then transcription of a few codons takes place. (d) Transcription elongation;
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transcribed
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Figure 22.6 By far the majority in both accessions were unannotated genes (Richards et al., 2012).
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Figure 22.17 Examples of ROC from (Habib et al., 2008). Left: Sensitivity and specificity of different
scoring methods: Comparison of different scoring methods on the ‘Yeast’ dataset using a subset of motifs
generated from subsets of size 35 with altered lengths (not including the full-length motifs, 685 motifs).
Each similarity score was assigned an empirical statistical significance p-value. The ROC curve plots the
true positive rate vs. the false positive rate, as computed for different p-value thresholds, where pairs of
motifs generated from genomic binding sites that were associated with the same factor are considered true
positives. The BLiC score (green, using a Dirichlet prior, or blue, using a Dirichlet-mixture prior, and blue
line is overlapped with green one) outperformed all other similarity scores: Jensen–Shannon (JS)
divergence (red), Euclidean distance (purple) and Pearson Correlation coefficient (cyan). Right:
Sensitivity and specificity estimated by structural data: Same as the left one but using the ‘Structural’
dataset. Pairs of motifs from the same structural family are considered true positives
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Figure 22.12 Cluster heat map of gene expression using SCoR-generated prognostic probes from NKI-295 dataset with blow-
up views of genes inside the centre of poor and good prognosis gene clusters. Probes matching the NKI 70-genes are marked in
black lines on the right side of the heat map (Yao et al., 2012)
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Figure 23.5 Histogram of the peak times of genes in each cluster for each algorithm in Yeast cell cycle
α-38 dataset. (a) SMART-CL (SMART I), Tchs = 20 andNmax = 5,K = 4; (b) SMART-FMM (SMART II),
Nmax = 5, K = 4; (c) ULFMM, kmax = 30, K = 7; (d) SSMCL, kmax = 30, K = 8; (e) MFA, q = 5, K = 3;
(f) MCFA, q = 6, K = 5; (g) MCLUST, K = 3; (h) PFClust. Sub-figures (a) and (b) show that four clusters
represent reasonably good clustering since there are only few small overlap regions between clusters.
Sub-figures (c) and (d) indicate that many clusters crowd and overlap in the region 5–30%, especially in
Sub-figure (c), where a clustering representing peaking at 20% superimposes on another cluster, which
spans over 10–30%. These overlapped clusters have to be one cluster. Sub-figures (e) and (f) show that
MFA and MCFA also give reasonably good clustering results when judged by eye; however, clustering
is poorer than SMART-FMM in the numerical metrics. Sub-figures (g) and (h) show the distribution of
the peak times of genes based on the clustering results of MCLUST and PFClust, respectively
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